
1 Introduction

With the increasing communication and networking capabilities of comput-
ers, a new field of research emerged within computer science: Distributed
Computing. Its focus is the design and study of distributed algorithms,
which are algorithms especially designed to run in distributed systems. The
first conference on this subject took place in the year 1982 [POD82]. A dis-
tributed system consists of a set of nodes, also called processes or proces-
sors, connected by communication links. Examples of distributed systems
are several computers connected via a network like the Internet and several
microprocessors connected via wireless technology such as wireless sensor
networks. The size of distributed systems can range from tens or hundreds
to millions of nodes.
A distributed algorithm determines the behavior of each node in the

distributed system. There is no central unit of control. Instead, the nodes
are autonomous. The goal of distributed algorithms is to establish a certain
global behavior of the distributed system as a whole. However, in order to
achieve a particular global behavior, the distributed algorithm has to cope
with two obstacles: locality and non-determinism. Locality refers to the
fact that the view of a node is limited to a small part of the distributed
system. Nodes have to cooperate in order to obtain information outside the
local view of a node or regarding the structure of the distributed system as
a whole.
Non-determinism is inherent to distributed systems. Messages may arrive

in an order different from the one that they have been sent in. Distributed
systems are not necessarily homogeneous. As an example, consider the
Internet which is quite heterogeneous regarding speed and latency of com-
munication links as well as the computational power of the nodes. Com-
munication links range from only a few kilobits to multiple gigabits per
second. Nodes range from small embedded systems and smart phones to
fast server systems. The exact characteristics of links and nodes are typi-
cally unknown in advance. Hence, distributed algorithms are designed to
be ignorant about them so that they function in any setting.
The size of distributed systems is constantly growing. Again, the Internet

is a good example of that, since more and more devices are constantly

1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

connected to it, e.g., smartphones. However, with the rising number of
nodes and communication links, the probability of faults increases [KP93].
To cope with faults, fault-tolerant distributed algorithms were introduced.
Informally, a distributed algorithm is fault-tolerant if it is able to recover

from faults in finite time or if it is able to provide some functionality in
spite of faults. Note that the class of tolerated faults may be restricted, i.e.,
a distributed algorithm tolerates faults of a certain kind but may become
dysfunctional after faults of a different kind. Human interaction might be
necessary, possibly involving a manual reset of the distributed system in
order for the distributed algorithm to recover. Dijkstra introduces a class
of distributed algorithms that provide a large degree of non-masking fault-
tolerance: self-stabilizing distributed algorithms. Given a large enough win-
dow of execution time without faults, a self-stabilizing distributed algorithm
can recover from any transient fault that might have happened in the past
without human intervention, regardless of the fault’s scale or nature. Lam-
port called the work of Dijkstra a “milestone in work on fault-tolerance”
[Lam84].
Many techniques have been proposed to build fault-tolerant distributed

algorithms. It can be observed that any fault-tolerant distributed algorithm
implements two functions: detection of faults and corrections of faults.
However, distributed systems are a particularly difficult setting to detect
and correct faults. The reasons for that are related to both locality and
non-determinism. Locality makes it difficult to detect faults. The main
problem is that something might look correct locally but is incorrect from a
global perspective. As an example, we refer to spanning tree construction.
A fault may change the parent of a node within the tree in such a way that
a loop is created. The loop may span across several hundred nodes and
communication links. Keeping additional information on each node often
facilitates making solutions locally checkable. Informally, this means that
at least one node will eventually become aware of faults, using only the
information within the local view of the node. The additional information
is usually redundant from the point of view of a perfect distributed system.
As an example, consider a spanning-tree protocol that, per node, stores a
pointer to the parent within the tree and the distance to the root of the
tree. The distances are implied by the pointers. Nonetheless, making nodes
aware of their distance to the root node plays an important role in detecting
faults in self-stabilizing spanning tree protocols.
The non-determinism accelerates a process called contamination. Even

before a process has had a chance to detect and correct a fault, faulty
information may have been passed on to other nodes. Due to locality, the

2

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

data is not recognized as faulty as it is passed on to further nodes. Faulty
information can very easily spread to large parts of the network. These
parts of the network may temporarily stop exhibiting the desired behavior.
The contamination process is hard to reverse.
Several techniques have been considered to design fault-tolerant algo-

rithms. However, many of them involve performing a global reset, after
a fault has been detected. The distributed algorithm will then start from
the beginning. This technique was also proposed to make distributed al-
gorithms self-stabilizing. However, with the increasing size of distributed
systems, global resets becomes more and more undesirable as they tem-
porarily affect the entire system.
This has been the motivation for finding ways to deal with faults more

locally. One essential ingredient is to spatially bound the contamination
process, i.e., containing the effects of a fault to a small area around the
location of the fault. The second ingredient is to locally repair the fault.
Kutten and Peleg proposed a technique called “fault-local mending”. A
similar approach is the notion of fault-containment, which is an extension
of self-stabilization. Fault-containing self-stabilizing distributed algorithms
not only recover from transient faults of any scale or nature, but also pre-
vent contamination and guarantee recovery from small-scale faults within
constant time. The repair of small-scale faults happens locally with minimal
effect on other parts of the network.
Two important properties of fault-containing self-stabilizing algorithms

are the containment time and the fault-gap. The former describes how fast
a small-scale fault can be repaired. The latter describes how soon another
fault can be contained, i.e., how long it takes the algorithm to be prepared
for another fault. Thus, having a low fault-gap is essential if small-scale
faults are expected to happen frequently. Fault-containment has already
been the subject of another Ph.D. thesis [Gup97]. Besides presenting sev-
eral problem specific fault-containing self-stabilizing algorithms, that thesis
presents a general technique to augment any silent self-stabilizing proto-
col with fault-containment via an automatic transformation. The trans-
formation utilizes global synchronization and global reset to achieve fault-
containment. While the containment time is constant, the fault-gap of the
proposed transformation is linear in the number of nodes in the system.
Furthermore, the number of nodes is bounded by a constant which has
to be known before the algorithm is deployed. As a result, the proposed
containment algorithms do not scale to larger networks at runtime.
Note that topological faults (e.g., removal or addition of new edges) are in

general hard to deal with. Some problems, like constructing a shortest path

3

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1 Introduction

tree, force algorithms to reconstruct large parts of the tree after a topological
fault. Hence, often neither a fast recovery from topological faults nor dealing
with them locally is possible. Techniques like super-stabilization therefore
focus on another aspect of recovering from topological faults: while the
system recovers from the topology change, it must not violate a certain
safety property.

1.1 Contributions of the Thesis

This thesis presents a novel approach to fault-containment based on a
technique for local synchronization. It is utilized to create an automatic
transformation that adds fault-containment to any silent self-stabilizing dis-
tributed algorithm. The transformation does not only achieve a constant
containment time but also a constant fault-gap. At the same time, the
transformation increases the stabilization time of the original algorithm by
merely a constant factor. The impact of a fault is confined to an area of
small size around the fault’s location. Outside this area, none of the nodes
execute an action or change their variables. This is a considerable improve-
ment over previously known transformations for fault-containment. They
have a fault-gap of Ω(n) and a small-scale fault is allowed to globally disrupt
the variables added by the transformation.
The transformation creates backups of the local state of each node. The

backups are placed on neighbors of each node. Previously known transfor-
mations create up to Δ backups. We show that the number of backups
per node can be reduced to two. The second contribution of this thesis is
a self-stabilizing algorithm that computes a placement for two (or more)
backups per node in such a way that the standard deviation of the number
of backups stored per node assumes a local minimum. It is shown how this
algorithm can be incorporated into the transformation such that contain-
ment time and fault-gap remain constant.
The third main contribution consists of the introduction of the concept

of fault-containing super-stabilization. It describes distributed algorithms
which withstand small-scale state corruptions and topology changes, even
if they happen at the same time. An automatic transformation is pre-
sented, with which any silent super-stabilizing algorithm can be made fault-
containing super-stabilizing. The fault-containing super-stabilizing algo-
rithm will first correct the state corruption and then exhibit the super-
stabilizing behavior of the original protocol. The safety property of the
original super-stabilizing protocol holds after a constant number of rounds.

4

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2 Organization of the Thesis

The number of backups is reduced to a minimum of at most four backups
per node. The backups are placed within the two-hop neighborhood of each
node.
All of the above protocols are shown to work under the most general

system model: the unfair distributed scheduler. In order to prove self-
stabilization under this model, a novel technique is introduced: serialization.
It can be used to elevate proofs written under the assumption of the central
scheduler, a rather strong system model, to the more general distributed
scheduler.

1.2 Organization of the Thesis

Chapter 2 defines the formal model of distributed systems used in this
thesis. Chapter 3 gives an overview of fault-tolerance in distributed systems,
including an introduction to the notions of masking and non-masking fault-
tolerance and self-stabilization.
Chapter 4 discusses various methods for proving that a given distributed

algorithm is self-stabilizing and introduces the novel method of serialization.
In addition, composition methods are discussed which are used in the con-
struction of the algorithms presented in this thesis. Chapter 5 presents the
transformation which adds fault-containment to any silent self-stabilizing
algorithm. Chapter 6 presents a self-stabilizing algorithm that computes a
backup placement such that the standard deviation of the number of back-
ups that each node stores assumes a local minimum. Furthermore, it is
shown how this placement algorithm can be integrated into the transfor-
mation presented in Chapter 5 without increasing the containment time
or fault-gap. Chapter 7 introduces the concept of fault-containing super-
stabilization and presents a transformation that converts any silent super-
stabilizing algorithm into a fault-containing super-stabilizing algorithm.

5

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Preliminaries

This chapter describes the formal models of distributed systems, algorithms,
and their execution which are used in this thesis. They are commonly used
in research on self-stabilizing and fault-containing algorithms.

2.1 Distributed Systems

A distributed system consists of nodes, also sometimes called processors or
processes, which are connected by communication links. The topology of a
distributed system is modeled as an undirected graph G = (V, E) where V
denotes the set of nodes and each edge (v1, v2) ∈ E ⊆ V × V corresponds
to a communication link between nodes v1 and v2. Two nodes connected
by an edge (i.e., a communication link) are called neighbors. For a node
v ∈ V , the set N(v) denotes the open neighborhood of v, i.e., N(v) contains
all neighbors of v but not v itself. The closed neighborhood of v is denoted
by N [v] = N(v) ∪ {v}. Furthermore let deg(v) = |N(v)| denote the degree
of node v and Δ = max{deg(v) | v ∈ V } the maximum degree of the nodes.
By n = |V | we denote the number of nodes, by m = |E| the number of edges
in the system, and by D the diameter of the topology G. The diameter is
defined as the longest shortest path between any pair of nodes. Examples
of such distributed systems are all computer or sensor networks.
It is not assumed that nodes have access to clocks. Hence, nodes cannot

measure the time that has passed. Furthermore, there is no central unit
of control, meaning that there is no entity coordinating the action of the
nodes or the communication between them. Control is distributed among
the nodes. Also, there is no global view. Thus nodes only have access to
the data stored in their own memory and any data that is obtained by
communicating with neighbors.

2.2 Algorithms, Protocols, and State Model

A distributed algorithm A is a mapping which assigns a finite set of protocols
to each node v ∈ V . Informally, A(v) denotes the set of protocols that node
v executes. The pair (v, P), v ∈ V, P ∈ A(v) is called an instance of protocol

7

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Preliminaries

P on node v. For protocols, the notation of repetitive constructs as defined
by Dijkstra is used [Dij75]. A protocol consists of a set of rules separated
by and enclosed by the keywords do and od. Each rule is a guarded
command of the form

guard −→ statement; statement; . . .

Associated with each protocol P ∈ A(v) with v ∈ V is a finite set of
variables. Each variable has a name and a domain. For any given v ∈ V ,
the names of the variables of any pair of protocol in A(v) are assumed to be
disjoint. The variable with the name “x” of a protocol P ∈ A(v) is denoted
by v.x. The values of these variables constitute the local state of instance
(v, P). The tuple1 of the local states of all instances (v, P), P ∈ A(v)
constitutes the local state of node v. The guard of a rule is a Boolean
predicate. The guards and statements of (v, P) may read only the variables
of all instances (u, Q), u ∈ N [v], Q ∈ A(u), i.e., all instances within the
closed neighborhood of v. The statements of (v, P) may only modify the
variables of (v, P). This implies that access to variables of instances outside
the closed neighborhood is not allowed. This communication model is called
the locally shared memory model.
The tuple of the local states of all nodes v ∈ V constitutes the configu-

ration of the distributed system, often also called the global state. The set
of all possible local states of an instance (v, P) is denoted by σP and the
set of all possible local states of a node by σA. ΣA denotes the set of all
possible configurations. IA = {(v, P) | v ∈ V ∧ P ∈ A(v)} denotes the set
of all instances. Two instances (v, P) �= (v′, P ′) are said to be neighboring
if v′ ∈ N [v]. In particular, the two instances on the same node (i.e., v = v′)
are called neighboring.
A rule of an instance (v, P) is called enabled if its guard evaluates to

true. An instance (v, P) is called enabled if at least one of its rules is
enabled. Node v is called enabled if at least one instances (v, P), P ∈ A(v)
is enabled. It is said that an Algorithm A has terminated in configuration c
if all instances (v, P) ∈ IA are disabled in c. Note that this model permits
multiple protocols per node. Informally, it can be said that these protocols
are executed in parallel. This is formalized in Section 2.4.
Figure 2.1 shows a simple example: the protocol MIS . The corresponding

algorithm AMIS satisfies AMIS(v) = {MIS} for all v ∈ V , i.e., an instance of
protocol MIS exists on every node. This algorithm will serve as an example
throughout this thesis. It will become clear that under certain assumptions,

1of fixed but arbitrary order

8

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3 Execution Model and Schedulers

Protocol MIS
Nodes: v is the current node
Variables: v.s ∈ {Out, In}
Predicates: inNeighbor(v) ≡ ∃u ∈ N(v) : u.s = In

do
[M1] v.s = Out ∧ ¬inNeighbor(v) −→ v.s := In
[M2] v.s = In ∧ inNeighbor(v) −→ v.s := Out

od

Figure 2.1: A protocol for computing a maximal independent set [SRR95,
HHJS03]

the algorithm computes a maximal independent set consisting of all nodes
v ∈ V with v.s = In.
In large part, the topology is assumed to be fixed in this thesis. An excep-

tion is Chapter 7, which considers the case where the topology may change
as a result of faults. In this case, the set of edges is regarded as part of the
systems configuration. We define the notions of extended configuration and
extended execution. An extended configuration consists of the pair (E, c)
where E ⊆ V ×V denotes a set of edges and c ∈ ΣA is a configuration. The
set of all possible extended configurations is denoted by ΣextA .
To conveniently refer to the value of an expression in a certain configura-

tion, the notation c
 expression is introduced. For example, c
 v.s refers
to the value of the variable v.s in a configuration c ∈ ΣA and c
 v.s = In is
true if and only if the variable v.s has the value In in c. Furthermore, writ-
ing (c
 v.s) = In is equivalent to c
 (v.s = In) and thus, the parentheses
are omitted. The notation may also be combined with extended configu-
ration, e.g., (E, c)
 N(v) = ∅ is true if and only if node v ∈ V has no
neighbors in E. The notation c|m is used to refer to the local state of an
instance m ∈ IA in configuration c.

2.3 Execution Model and Schedulers

For different distributed systems, the speeds and latencies of the underlying
communication links and the computational power of the nodes may vary
significantly. But also for one distributed system, these parameters may
vary over time. Hence, the exact parameters are usually unknown in ad-

9

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Preliminaries

vance. This inherent non-determinism is modeled as part of the execution
model via a virtual entity called the scheduler. Several scheduler mod-
els exist. Three scheduler models are used in this thesis. The distributed
scheduler is the most general one. Furthermore, two special cases of the
distributed scheduler exist: the central and the synchronous scheduler.

Execution of a distributed algorithm A is organized into steps. Let
ci−1 ∈ ΣA denote the configuration of the distributed system before the i-th
step. The scheduler selects a non-empty subset Si ⊆ IA of instances that
are enabled in ci−1. Next, all selected instances (v, P) ∈ Si make a move,
i.e., the statements of one enabled rule are executed. Note that several mod-
els exists for the case where multiple rules of a single instance are enabled.
In this thesis, this case is avoided, i.e., the algorithms are constructed in
such a way that at most one rule is enabled at a time. Furthermore, Si
may contain two or more neighboring instances. Clarification is needed on
how a move of an instance (v, P) affects moves of neighboring instances
during the same step. Composite atomicity is assumed, which means that
choosing an enabled rule and executing its statements is regarded as one
atomic block. The changes made by an instance (v, P) become visible to
neighboring instances at the end of the i-th step, i.e., after all neighboring
instances have made their move. This also holds for two neighboring in-
stances on the same node. When all instances in Si have made their move,
this yields ci, the configuration after the i-th step and before the (i+ 1)-th
step of the execution.

The distributed scheduler is not restricted in its choice of Si and it is as-
sumed to choose Si non-deterministically [BGM89]. That means, no model
(e.g., probabilistic or deterministic) for predicting the choice of Si exists.
Besides having to choose a non-empty Si, the distributed scheduler can se-
lect any number of enabled instances in each step. The synchronous sched-
uler chooses all instances enabled in ci−1 [Her90]. It is the only deterministic
scheduler, and assuming that all protocols are deterministic, ci is uniquely
determined by ci−1. It models synchronous distributed systems for which
it is true that any changes to the local state of node v can be propagated
to the neighboring nodes in constant time. Furthermore, all nodes work in
synchrony in the sense that they execute their moves simultaneously at any
time. The distributed scheduler on the other hand models asynchronous
systems, in which no such assumptions exist. It takes into account that
in heterogeneous systems the speed of nodes and links may vary. Hence,
in fast areas more moves may be made than in slow areas. Note that the
synchronous scheduler is a special case of the distributed scheduler. Hence,

10

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.3 Execution Model and Schedulers

c
Out

a
Out

b
Out

c
In

a
In

b
In

c
Out

a
Out

b
Out

Figure 2.2: Execution of the MIS algorithm in a synchronous system

any algorithm designed for the distributed scheduler also works under the
synchronous scheduler.
The central scheduler is the third type. It selects only one instance per

step, i.e., |Si| = 1 for all i. This scheduler simplifies the design of dis-
tributed algorithms as it provides mutual exclusion between neighboring
instances. Furthermore, the mutual exclusion provides some form of sym-
metry breaking. For algorithms that do not perform symmetry breaking
explicitly, executions under the distributed scheduler may lead to a live-
lock. Figure 2.2 shows an example of such a livelock, namely an execution
of the protocol shown in Figure 2.1 under the synchronous scheduler.
The central scheduler has a long tradition in self-stabilizing research as

the first self-stabilizing algorithm was designed for this particular scheduler
[Dij74]. Like the synchronous scheduler, the central scheduler is a special
case of the distributed scheduler. However, the central scheduler is asyn-
chronous.
Schedulers may be further categorized by the level of fairness they pro-

vide [DTY08]. A scheduler is called weakly fair if it eventually selects any
continuously enabled instance. Stronger types of fairness are discussed in
[DTY08]. The most general scheduler is the unfair scheduler which does
not provide any type of fairness. For example, it may never select a contin-
uously enabled instance, provided that there are other enabled instances.
The synchronous scheduler is obviously weakly fair. Distributed and central
schedulers may exhibit any of the three types of fairness. All algorithms
presented in this thesis work under unfair schedulers.
The sequence e = 〈c0, c1, c2, . . .〉, where c0 denotes the initial configura-

tion and ci ∈ ΣA is the configuration after the i-step, is called an execution.
It describes the behavior of a distributed system over time. The correspond-
ing sequence S = 〈S1, S2, S3, . . .〉 is called the schedule of the execution.
Each transition from ci to ci+1 is atomic, i.e., intermediate configurations
in-between ci and ci+1 do not exist in this model. An execution ends when

11

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Preliminaries

the algorithm has terminated. This thesis discusses silent algorithms only.
An algorithm is called silent if it terminates after a finite number of steps.
Hence, all executions considered in this thesis are finite. Whether an algo-
rithm terminates may depend heavily on the scheduler as discussed in this
section using the example given in Figure 2.2.
Note that unlike in topological self-stabilization [GJR+10], it is not as-

sumed that instances are able to actively destroy or create communication
links. Hence, for an execution starting in an extended configuration (E, c),
the set of communication links is assumed to be equal to E at all times.
In this thesis we say that a Boolean predicate p on ΣA is stable for an

execution e of A if any configuration in e subsequent to a configuration
satisfying p also satisfies p.
The notation (c : S) is used to describe the configuration after a step

of an algorithm A under the distributed scheduler, where c denotes the
configuration before the step and S ⊆ IA the set of instances enabled in
c that make a move during the step. If the algorithm at hand is deter-
ministic, then (c : S) denotes the configuration after the step which is
uniquely determined. (c : S1 : S2 : S3 : . . .) is defined to be equivalent to
(. . . (((c : S1) : S2) : S3) : . . .). Otherwise, if the algorithm is not determinis-
tic (e.g., probabilistic or non-deterministic), (c : S) denotes the set of all con-
figurations that are possible outcomes of the step. (c : S1 : S2) denotes the
set
⋃
c′∈(c:S1)(c

′ : S2), (c : S1 : S2 : S3) denotes the set
⋃
c′∈(c:S1:S2)(c

′ : S3)
and so forth.
A step of A under the central scheduler is described by (c : m) where

m ∈ IA is an instance enabled in c. It is defined as (c : m) = (c : {m}).
Again, (c : m) may denote a single configuration or a set of configurations
depending on whether the algorithm at hand is deterministic or not. Multi-
ple steps under the central scheduler are denoted by (c : m1 : m2 : m3 : . . .)
which is equivalent to (c : {m1} : {m2} : {m2}). Both notations may be
combined, e.g., (c : m1 : S1).

2.4 Notions of Time

In this section, we define three different ways to measure time that are com-
monly used in self-stabilizing research: move, step, and round complexity.
Consider a finite execution e = 〈c0, c1, . . . , ck〉 and the corresponding sched-
ule S = 〈S1, S2, . . . , Sk〉. The number of moves in e is defined as

∑k

i=1 |Si|,
which is the total number of moves made by all instances. The length of e
in steps is k.

12

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.4 Notions of Time

The length of e in rounds is determined by partitioning e into rounds
as follows: The first round of e is defined as the prefix 〈c0, c1, . . . , cj〉 of e

with minimal length such that V \ D0 ⊆
⋃j
i=1 Si ∪ Di where Di ⊆ IA is

the set of instances that are disabled in ci. All further rounds are derived
recursively by applying the definition of the first round to the suffix e′ =
〈cj , cj+1, . . . , ck〉 and the corresponding schedule S′ = 〈Sj+1, Sj+2, . . . , Sk〉,
i.e., the second round of e is the first round of e′ and so on.
Counting the number of moves is a good measure to estimate the energy

consumption in settings where transmission of data is costly. As a node has
to broadcast its local state to neighbors after each state-change, reducing the
number of moves may save energy [TW09]. Using the number of moves as
a measure of time is justified for the central scheduler, under which at most
one move is made in each step. However, in general that does not hold. The
number of moves in each step that the scheduler model allows, may be seen
as the degree of parallelism that the model allows. The central scheduler
exhibits the lowest degree of parallelism, hence the number of moves is
identical to the number of steps. The synchronous scheduler provides the
maximum degree of parallelism. Hence one round is completed each step.
In general it holds

rounds ≤ steps ≤ moves

Informally, a round can be described as the shortest prefix of an execution
that allows any information to travel at least one hop. It takes at least 1
step to complete one round. An upper bound on the number of steps per
rounds highly depends on the scheduler model and the algorithm at hand.
However, we argue that in practice the time needed to complete one round
depends on the slowest communication link and the largest latency. Hence,
we assume that the time per round is bounded by some system dependent
expression.
Note that under an unfair scheduler, rounds can potentially be of infinite

length as the scheduler is not obligated to eventually select a continuously
enabled node. However, under the weakly fair scheduler, a round is guar-
anteed to be finite. Furthermore, rounds are guaranteed to be finite even
under an unfair scheduler if the algorithm is silent. This is the case for all
algorithms in this thesis.
Generally, the time that a node needs to make a move is disregarded. It

is assumed to be small compared to the time needed for communication.
The next two lemmas clarify that the definition of rounds indeed satisfies

the very intuitive requirement that the length of any suffix of an execution

13

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Preliminaries

of x rounds does indeed not exceed x rounds. We use the operator ◦ to
denote the concatenation of sequences.

Lemma 2.1. Let e1 be an execution of a distributed algorithm A and r1
the first round of e1 such that e1 = r1 ◦ e′

1. Let e2 denote a suffix of e1 and
r2 the first round of e2 such that e2 = r2 ◦ e′

2. Then e′
2 is a suffix of e′

1.

Proof. Only the case where e′
1 is a proper suffix of e2 is considered. Other-

wise, the claim is obviously true. Let r′
0 be a prefix of r1 and r′

1 a suffix of
r1 such that e1 = r′

0 ◦ e2 and r1 = r′
0 ◦ r′

1. The claim holds if r′
1 is a prefix

of r2, which we proceed to prove.
Let r1 = 〈c0, c1, . . . , ck〉. There exists an instance m ∈ IA that is enabled

in all c0, c1, . . . , ck−1 and that is executed or becomes disabled during the
transition ck−1 → ck, but not earlier. If ck is the first configuration of
r2, then r′

1 is clearly a prefix of r2. Otherwise, some ci, i < k is the first
configuration of r2 and m is enabled in ci. Hence, r2 must include ck and
thus r′

1 is a prefix of r2.

Lemma 2.2. Let e be an execution of x rounds. Any suffix of e has at most
x rounds.

Proof. Let e be an execution and e′ a suffix of e. Assume that e is par-
titioned into rounds r1, r2, . . . , rk and e′ into rounds r′

1, r′
2, . . . , r′

l. Let
ei = ri ◦ ri+1 ◦ . . . ◦ rk and e′

i = r′
i ◦ r′

i+1 ◦ . . . ◦ r′
l. The term ek+1 is

defined to be the empty sequence. By induction on j it is shown that any
e′
j is a suffix of ej . In particular, e′

k+1 is a suffix of ek+1 which is the empty
sequence. Hence, e′

k+1 is the empty sequence and thus l ≤ k. By assump-
tion e′

1 is a suffix of e1. Assume that e′
j is a suffix of ej for j ≤ k. By

Lemma 2.1 it follows that e′
j+1 is a suffix of ej+1.

2.5 Other Communication Models

The algorithms in this thesis are designed for the locally shared memory
model with composite atomicity as defined in Sections 2.2 and 2.3. This
section gives an overview of other communication models that are commonly
used.
Theoretical models exist, in which an instance (v, P) can read any vari-

ables within distance k of v. This is called the distance-k model. For k = 1
it matches the model presented in Section 2.2. Values k ≥ 2 often make it
easier to design distributed algorithms. However, this model is very costly
to emulate in the distance-1 model [GGH+04, GHJT08, Tur12].

14

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.6 Anonymity and Node Identifiers

Dolev et al. studied the effects of relaxing the assumption of composite
atomicity [DIM90, DIM93]. They propose a model called read/write-atom-
icity. Nodes communicate via communication registers instead of shared
memory. For each edge (v, u), two registers rv,u and ru,v are introduced.
Node v writes to rv,u and reads from ru,v and node u writes to ru,v and
reads from rv,u. Direct access to variables of other nodes is not possible.
Read/write-atomicity means that a move of a node must involve at most
one read or one write operation but not both. This model emphasizes that
it might be hard for a node v to obtain a consistent snapshot of its neigh-
borhood prior to making a move. Consider the example that v reads ru,v
first. Before v makes the move reading ru,w, u �= w ∈ N(v), u is allowed to
change the value of ru,v. Dolev et al. show that protocols that rely on the
assumption of composite atomicity can be transformed to the read/write-
atomicity model using a mutual exclusion protocol they provide [DIM93].
The message-passing model constitutes a more realistic alternative to the

locally shared memory model. Each communication link is modeled as a
queue of messages and each node has access to functions for posting and
receiving messages to resp. from any adjacent queues. The characteristics of
the communication links may vary. Assumptions on whether messages may
be permuted, duplicated, or dropped are often made. The capacity of the
channels may be infinite or bounded by a constant. The size of messages
may be bounded or unbounded. As an example of a communication link
that may reorder messages, consider the case of an overlay network using
UDP/IP for communication between nodes. The UDP packets which wrap
the messages exchanged between the nodes may travel by different routes
in the underlying network, thus arriving in an order different from the one
they have been sent in. Furthermore, UDP/IP packets are in general not
guaranteed to arrive and may be dropped.
All of the above models exist in synchronous and asynchronous flavors.

The communication register model with read/write atomicity somewhat
resembles the message-passing model. For three representative message-
passing models, we refer the reader to [Pel00, Section 2.3].

2.6 Anonymity and Node Identifiers

Node identifiers are used to model to what degree nodes are distinguishable.
Whether nodes have such identifiers and to which degree the identifiers are
unique is a major aspect of a distributed system. In this thesis, the identifier
of a node v ∈ V is denoted by v.id.

15

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

