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I N TRODUCT I ON

In embedded system design a trend towards high integration of different functionality

on the same platform can be observed across a wide-range of industries as e. g.

automotive, aerospace, and industrial automation. This trend is driven by cost pressure

and increasingly shorter product cycles, and it is made possible through a number of

technological advances.

Multi-core architectures, which are known from general purpose computing for

some years, have found their way into industrial practice of embedded system de-

sign. They provide greatly increased compute power at moderate energy consumption.

This allows to consolidate functionality that is traditionally distributed across several

electronic control units (ECUs) onto a common processing element, thus giving op-
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14 introduction

portunities to significantly reduce hardware, wiring and energy cost. Similarly, the

availability of low-cost high-speed communication networks that are suitable for use

in embedded systems allows to reduce the number of networks in today’s complex

systems. E. g. the FlexRay bus [41] provides high-speed real-time capable communi-

cation for automotive networks. For the future, widespread use of switched Ethernet

as backbone bus in automotive networks is expected to further reduce the number of

buses [141]. In the domains of aerospace and industrial automation, real-time capable

Ethernet derivatives are already being used today with e. g. the ARINC 664 [1, 139]

and the ProfiNet [116] standards. These technological advances provide the required

performance to integrate more functionality on a platform.

The increased system complexity that arises through a higher degree of integration

has to be addressed in the design process - especially in the face of shortened product

cycles. One key step to tackle this complexity is to efficiently allow for design reuse,

i. e. use of previously developed components in a new system. A second measure

is to ease distributed development to parallelize workflows. Both measures can be

achieved by defining clear-cut interfaces among components. The third key step is to

provide easy-to-use mechanisms for composing these individual components based on

their interfaces. This can be achieved e. g. through automated property verification or

system synthesis steps.

The integration problem outlined above, however, is more complex than a mere

composition of application programming interfaces (APIs) of components. In embedded

systems application requirements go beyond functional requirements due to the close

interaction with the physical environment. Systems have tight constraints on their real-

time behavior as e. g. printing machines in industrial automation, where the single

motors of the paper feed have to be accurately synchronized to avoid paper jams.

Such real-time constraints can come along with requirements on system safety, as

e. g. for the brakes in automotive break-by-wire applications, or with requirements on

availability as e. g. in the flight control of an aerospace system. These constraints, as

well as the component properties that determine their adherence, have to be modelled

in the component interfaces. The composition of a complex embedded system then

requires to determine system-level properties from the component interfaces, which

have to incorporate non-functional properties and constraints. In many cases, as

e. g. real-time, the system-level properties resulting from component composition are

super-additive and often not even continuous, i. e. a system-level property cannot

be determined as sum of component properties and an infinitesimal value change of

a component specification can have a large impact on a system property. Thus, the

adherence of components to their interface is critical when system-level properties

have to be guaranteed.

In the face of this problem additional issues arise with a higher degree of integra-

tion. Consolidating several components on the same platform introduces additional

dependencies through use of shared resources. In safety-critical systems, however,

certification may only be performed on a sub-system level if “sufficient independence”
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1.1 design of embedded systems 15

between components is guaranteed [62]. Otherwise, all components must be certified

according to the highest applicable safety standard. This can be an extremely costly

design process. Thus, when two components of different safety-criticality shall be

consolidated on a common platform, they either must be certified jointly or appropri-

ate mechanisms that guard component behavior must be used, i. e. the component

specification/interface has to be enforced. Such mechanisms must be simple as they

become subject to certification themselves.

A second issue arises, when the interface of a component that shall be integrated

inherently cannot be characterized appropriately. This may be the case when e. g.

the component displays behavior, which is adaptive to its application context. Typical

examples for this are e. g. components that highly depend on user-interaction or

variable bitrate video de-/compression algorithms [37], whose computational complexity

depends on the considered scene. Component interfaces also can be inherently hard

to characterize when open networks (e. g. Car-to-X communication) are considered, or

when components can be updated or exchanged in a plugin-style manner. Although

the system integrator may specify interfaces for such components, the conformance of

the components to the interfaces cannot be validated at design-time.

Thus, for coming highly integrated embedded systems we expect to see

• a larger number of components accessing the same shared resources,

• components with different qualification or certification requirements, and thus

with different confidence in their specification,

• and components that inherently cannot be specified accurately.

Nonetheless, the component specification retains its importance for verification of

system-level properties due to their super-additive and non-continuous nature. The

need for accurate specification is indeed even aggravated through the high number

of components. This thesis addresses this ambivalence in the scope of safety-critical

real-time systems. Particularly, we investigate how the conformance of components

to their specification can be enforced efficiently through runtime mechanisms. In this

scope, we will follow an approach of runtime monitoring.

In the remainder of this chapter we elaborate further on the context of this the-

sis. Particularly, we discuss the state-of-the-art in embedded system design with

a particular focus on safety and real-time properties and the aspects of component

reuse and integration. Further, we address the issue of incorporating components

with inaccurate and changing specification - two aspects that have gained particular

relevance lately. Based on this discussion of current developments in the design and

architecture of embedded systems, we define the research objective of this thesis.

1.1 design of embedded systems

To manage the design complexity of today’s embedded systems, proper engineering

methods are fundamental. In the automotive industry, which we regard representatively
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Figure 1.1: Design Process according to the V-Model

for the domain of safety-critical systems, development follows the “V-Model” [60, 63,

125] as shown in Figure 1.1. This design process follows a top-down approach, in

which, starting from an initial requirements specification, the system design is step-

wise broken down and refined into components and functions of manageable complexity.

The components and functions can then be implemented concurrently by different

teams or suppliers according to their specification. This implementation branch is

mirrored in a corresponding integration & test branch to guide the composition of the

independently developed components and functions. Each function, component, system

and finally the product is tested for satisfaction of its specification. Comparable design

processes, following at least the specification and implementation branch of the V-

Model can be found in other standards as the generic safety standard IEC 61508 [62]

or the safety standard for airborne systems DO178-B [121].

In the requirements specification phase of the V-Model high level application re-

quirements are defined per intended system function. In the special case of safety-

critical applications this step also already incorporates safety requirements. Specifi-

cally, the automotive standard for functional safety ISO 26262 [63] requires identifi-

cation of functions that could lead catastrophic failures, e. g. “functions that enable

the system to achieve or maintain a safe system state”, “functions related to detection

[. . . ] of faults” or “functions that allow modifications of the software”.

In the system design phase (“software architectural design” in ISO 26262-6 [63],

“software design process” in DO178-B [121]) the requirements are mapped to architec-

tural entities. This includes static aspects, such as software structure and datatypes,

as well as dynamic aspects of the design, such as control flow and concurrency of

processes or temporal constraints. In the component design phase [125] the design is

further subdivided in a hierarchical manner.

Finally, in the function implementation phase the specified components/functions

are implemented according to the specification. This can be done either directly in
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1.1 design of embedded systems 17

source code or in a modelling language with appropriate code generation. The product

of this stage is source code and a translation to object code.

In the corresponding integration and test branch of the V-model the implementa-

tion artifacts are tested for conformance with their respective specification and are

integrated into a composed system. On the function, component and integration test

levels, this incorporates function, interface, and resource usage tests as well as fault

injection tests for safety mechanisms, for the corresponding stage of integration. On

the acceptance test level the complete composed system is tested w.r.t its specification.

This includes hardware-in-the-loop (HIL) tests, restbus simulations as well as tests

of the final product.

This “V-model" process bears the caveats that

1. inconsistencies and errors in the initial specification are only detected relatively

late in the design process

2. the requirements specification has to be available at the beginning of the

design.

To alleviate the first issue and to detect inconsistencies in the specification early on,

the specification and implementation branch is extended by design phase verification

steps [63] as shown in Figure 1.1 1. Their purpose is to show that the further

specification/implementation of a function is indeed a refinement of the higher level

design. These design phase verification steps can be performed e. g. through formal

verification, data flow and control flow analysis, simulation (of an executable model)

or prototype generation [63]. The choice of the employed methods depends on the

design phase, the safety criticality of the considered component or function and the

used modelling/implementation language.

The second issue has been addressed in an updated version of the V-Model called

“V-Model XT" [61], which allows tailoring of the development process to specific needs.

This includes e. g. iterative refinement of the system specification.

At all stages of the design process also non-functional requirements, such as real-

time and safety properties as considered in this thesis, must be taken into consideration

and have to be specified if applicable.

1.1.1 Functional Safety

In the application domains of automotive and aerospace systems stringent safety

standards apply. The applicable standards, i. e. IEC 61508 [62] as application-

independent standard, ISO 26262 [63] for the automotive, and DO178-B [121] for the

aerospace domain, not only stipulate requirements and guidelines for the developed

system but also on its design process.

1 sometimes the design phase verification steps are represented as a second “V” of a virtual integration [130]
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The requirements on the design process address every stage of the “V-model”. For

the requirements definition phase e. g. IEC 61508 [62] suggests use of tools, such

as Controlled Requirements Expression (CORE) [90], to ensure that all design re-

quirements are properly captured and consistent. Further, it suggests use of certain

modelling schemes and languages (e. g. data flow diagrams, Higher Order Logic

(HOL), temporal logic) and development and coding practices (e. g. modular software

design, wrappers for library functions, avoidance of dynamic variables and objects,

limited use of interrupts, pointers and recursion). Some of the required design prac-

tices can become extremely cost intensive e. g. the use of multiple-version dissimilar

software [121] (or independent parallel redundancy in [63]) where several indepen-

dently developed versions of the same functionality are required to provide additional

safety [121]. Additionally, for certain safety levels the standards request that imple-

mentation, and verification and test be performed by independent teams (e. g. formal

inspection in [62]).

All these design process requirements make the development of safety-critical sys-

tems extremely costly. As safety certification requires consideration of the complete

integrated system rather than individual components, the certification effort and cost

for highly integrated systems rises dramatically. This is aggravated when several

functions that shall be integrated on a common platform - as envisioned for modern

multi-core processors - have different safety criticalities. In this case all components

must be developed according to the highest applicable standard if no sufficient inde-

pendence [62] (or freedom from interference [63]) can be guaranteed. In this context

sufficient independence refers to the guarantee that a fault of a component with low

safety-criticality cannot cascade down to a component of higher criticality. Thus,

the standards require certification of a non-safety-critical component if it cannot be

guaranteed that a failure cannot affect another safety-critical component.

In order to reduce certification effort, all of the mentioned standards suggest methods

to establish such sufficient independence among components through architectural

means. One such architectural measure is partitioning [121, 63], where additional

hardware or software components prevent interaction among partitioned components.

In this case the partitioning mechanism must be certified according to the highest

applicable safety level. Such partitioning has to consider hardware resources (e. g.

processors, memory devices, interrupts), control and data coupling, and failure modes

of components and protection mechanisms. Techniques, that are typically used for

such partitioning, include e. g. spatial isolation through memory protection units

(MPUs) or memory management units (MMUs) [69] and temporal isolation through

time division multiple access (TDMA) scheduling [115] or methods as employed in

the Time-Triggered Architecture [70]. Partitioning is also applied to communication

networks as e. g. in the scheduling of FlexRay [41] or Time-Triggered Ethernet [71].

Strict partitioning pre-allocates system resources per partition and does not allow

reclamation of unused resources. As a consequence it causes considerable overhead.
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1.1 design of embedded systems 19

On the other hand it makes certification independent of the specification of an isolated

component, and thus eases verification.

Safety Monitoring [121] is another measure to guarantee sufficient independence. A

dedicated monitor, which can be implemented in hardware, software or a combination

of both, directly monitors a function for failures. Among others, such a monitoring may

regard functional behavior (e. g. sanity check of output values), access to resources (e. g.

memory access patterns) or temporal properties (e. g. maximum activation frequency).

Monitors may be used to check a component directly w.r.t. a given specification, or

in a design that follows the principle of multiple-version dissimilar software, w.r.t the

outputs of two or more distinct implementations of the same component. The technique

of monitoring can be used to reduce the safety requirements of the monitored function,

while the monitor must be certified to apply this technique. This requires verification

of the correctness of the monitoring mechanism, an assessment of the fault coverage,

and a proof of independence of monitor and function. Monitoring does not pre-

allocate system resources to single components, as strict partitioning does. Thus, it

potentially allows for higher resource utilization - particularly if it checks against a

given specification, rather than the outputs of multiple instances of a component.

The specification of properties at the external interfaces of a component, which is

required for monitoring, is also required in the specification and design verification

steps of the V-Model (cf. Figure 1.1). Further, such specifications play an important

role for the reuse of component as discussed in the following section.

1.1.2 Design reuse

Due to cost and time-to-market pressure, high design efficiency is important. To

achieve this goal the reuse of previously designed components is key. Development

according to the V-Model is tailored to allow design reuse through its hierarchical

design procedure and the refinement of components. This is widely exploited in

industry.

In the automotive domain, original equipment manufacturers (OEMs), i. e. car

manufacturers, defer the responsibility for entire subsystems or single components

to suppliers, which develop components according to specification [125], i. e. the

responsibilities in the V-Model are separated by horizontal cuts (Figure 1.1). If the

specification permits, these components or subsystems are integrated into different

vehicles - also from different vendors. As a result such components can be developed

more cost efficiently. Also vice-versa, the integrator typically has different suppliers

for the same component (i. e. identical specification), which allows to reduce cost and

to reduce dependency on single suppliers. Thus, as long as components or subsystems

fulfill their external specification - or interface as we will later call it - they can be

readily reused.

For safety aspects, design reuse raises additional issues, though. Certification

requires to regard a system as a whole. As a consequence isolated components
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cannot be certified. However, e. g. ISO 26262 [63] specifically addresses the issue

of component reuse. Components that are reused with modifications require to be

certified along the standard process. However, components that are reused without

modifications and are sufficiently qualified can be reused in a new system. In this case,

the specification of a qualified component requires to include functional requirements,

behavior in case of failures or overload, response time of the component and information

on the resource usage and on the runtime environment (RTE). Further, the interfaces

and the description of the component integration and configuration have to be included.

Thus, also the reuse of components is a specification-driven process. This speci-

fication requires to include all relevant information for the execution context of the

respective component. As a result, the assumptions that were made for the design

phase verification steps and the test phase verification steps still hold for the reused

component and for the remainder of the system.

1.1.3 Functional Architectures and Consolidation of Communication

In order to further aid in the integration of complex embedded systems and to foster

the reuse of legacy components, the use of integration platforms is promoted across

several industries. This includes functional architectures on the software side as well

as consolidation of networks on the communication side. In either case the integration

platform is closely coupled with the modelling and verification of the above design

processes.

In the automotive industry this trend can be observed with the standardization of

a common operating system interface and middleware. In 1993 the Offene Systeme

und deren Schnittstellen für die Elektronik im Kraftfahrzeug (OSEK) consortium, con-

sisting of several German automotive companies, started a standardization initiative

for distributed control units in automotive systems. In 1994 the French Vehicle Dis-

tributed eXecutive (VDX) consortium joined the effort. One of the main results is

a common operating system interface OSEK-OS [49] for automotive systems. The

standard provides a specification of an application interface for operating system and

input/output (I/O) services. The main purpose of this standardization being better

portability of software components among platforms. With the provided interface spec-

ification software components are being made largely independent of the underlying

hardware platform and base-software. Further, to increase portability the OSEK/VDX

consortium defined a language for specification of configuration options with the OSEK

Implementation Language (OIL), which can be automatically processed and compiled

into code by appropriate design tools [160]. In the light of the above design process,

we see that these standardization efforts attempt to harmonize component interfaces

in order to ease component reuse according to currently used safety standards [63].

The efforts for alleviating integration effort in the automotive domain are continued

in the AUTomotive Open System ARchitecture (AUTOSAR) consortium [11]. Based on

the OSEK standards the specification of an automotive middleware interface with an
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1.1 design of embedded systems 21

associated design process are developed [12]. It allows the synthesis of a RTE based

on a specification of software components and their communication dependencies.

Further, it specifies some mechanisms for monitoring components according to their

specification.

Comparable approaches for integration can be found in the aerospace industry.

The aerospace industry standardized a common real-time operating system (RTOS)

interface in 1997 in the ARINC 653 [7] standard [115]. The Application/Executive

Interface (APEX) of ARINC 653 defines the way in which software components interact

with the RTOS, again providing a well-defined interface among components to ease

the integration process. In contrast to the automotive domain the degree of integration

has been driven further, due to the requirement to reduce the number of hardware

components to reduce weight and energy consumption [115]. Integrated Modular

Avionics (IMA) architectures aim at integrating different functionality of an aircraft on

common hardware, i. e. to introduce the extensive use of shared resources [43]. As the

integrated components may have different safety certification requirements according

to the applicable safety standard DO178-B [121], ARINC 653 readily provides means

for component isolation through strict segregation. This is established via virtual

memory in the spatial domain and via TDMA scheduling in the temporal domain [7].

Thus, also here some means that can provide sufficient independence are part of

the operating system specification. As a consequence, the operating system, which

represents a pre-qualified component, can be reused across several projects, and it

isolates components to reduce the certification effort for the components. In other

words, the verification requirements of the integration & test branch of the V-Model

are minimized by architectural means, which can be used as pre-qualified mechanisms

that do not require re-certification.

The trend towards high integration is not limited to software systems, but can also

be observed for communication media. In the scope of the IMA the aerospace industry

defined Avionics Full Duplex Switched Ethernet (AFDX) communication network as

part of the ARINC 664 standard [1]. One of its aims is to reduce the number of buses

in an aircraft by consolidating the communication on fewer media. A key concept to

maintain the high safety qualification of the legacy bus configurations is the definition

of Virtual Links (VLs), which are isolated against each other and can be associated

with certain quality-of-service (QoS) guarantees. The previously used legacy buses

are routed transparently through the AFDX network. Although the transparent use

for legacy devices eases integration to some degree, it is still a painstaking process.

The configuration of an AFDX network requires careful configuration of the QoS

guarantees for each VL and even requires separate configurations for each router in

the network.
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1.2 evolving systems and inaccurate specification

Above we have seen that the design process for critical embedded systems is gov-

erned by specifications, modelling and description of interfaces. The consistency of

the specification and the integration of components to a complete system is verified

thoroughly at design time. Through this process the adherence of all requirements is

ensured.

As a result from this methodology, safety-critical systems are configured statically

and provide little room for adaptation after deployment. DO178-B [121] provides de-

tailed guidelines for modifications of previously developed software (comparable to the

guidelines on component reuse in ISO 26262 [63]), stating that the safety assessment

has to be re-evaluated considering the modifications. Further, for user-modifiable soft-

ware it states, that it must be shown that any modification through the user cannot

affect system safety - independent of the correctness of the user-modified software.

Additionally, upon user-modification of a component, the user assumes all respon-

sibility of the safety of the modified component. Comparable requirements apply to

option-selectable components and field-loadable software. For the latter, mechanisms

to ensure detection of corrupt or partial loading of software and compatibility of the

software are required.

As a consequence from these requirements on software adaptation, deployed sys-

tems are rarely changed [133]. When they are, the changes usually affect non-critical

components that are guarded by means to establish sufficient independence. This way

the adherence to certain parts of the specification of a component is ensured by pro-

tection mechanisms (e. g. partitioning or monitoring) to compensate for the unknown

specification of future system updates.

Comparable problems arise when components cannot be accurately specified right

from the beginning of the design process. This is the case when e. g. the component

displays behavior that is adaptive to its application context. Examples for this are

components that highly depend on user-interaction (i. e. user interface) or variable bi-

trate video de-/compression algorithms [37], whose computational complexity depends

on the considered scene. A component specification can also be inherently hard to

characterize, when open networks (e. g. Car-to-X communication [160]) are consid-

ered. Although the system integrator may specify interfaces for such components

and enforce the behavior through appropriate runtime mechanisms, the definition of

suitable interfaces is hard. This is especially true when a component’s typical behav-

ior significantly deviates from its worst-case behavior (e. g. best-effort applications).

Allocating resources according to the typical component resource requirements may

cause a deterioration of the component’s perceived performance, while an allocation

to the worst-case requirements may cause severe overprovisioning in the typical case.

For either case strict partitioning mechanisms, which statically pre-allocate resources,

are sub-optimal.
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