
Chapter 1

Introduction to theory and
experimental methods

In this chapter all necessary concepts needed to understand the present work will briefly
be introduced. The first three subsections (1.1 - 1.3) are intended to explain what a
crystal is, how it is usually described and what happens if you break it, i.e. create a
surface. Once a surface is created a method to describe it is needed as well, which will
be given. The following two subsections are about the kinematic diffraction theory (1.4)
in general as well as the theory of operation of LEED and, in particular, SPA-LEED
(1.5). The next section deals with the theory of electrons in lattices in preparation of
the Peierls distortion. The last subsection (1.7) focuses on phase-transitions in general
as well as the in this work witnessed Peierls transition.

1.1 Crystals, symmetry and order

Before going into detail on how a crystal and it’s surface can be described, I would like
to address the question: What is a crystal? Or to be more precise: How can a crystal
be defined? The quest of finding an answer to these, rather simple looking, question will
lead to another question. A crystal’s definition can be found in the International Tables
of Crystallography, Volume A, Chapter 8.1, Basic Concepts. It goes as follows:

Crystals are finite real objects in physical space which may be idealized by
infinite three-dimensional periodic ‚crystal structures‘ in point space. Three-
dimensional periodicity means that there are translations among the sym-
metry operations of the object with the translation vectors spanning a three-
dimensional space. Extending this concept of crystal structure to more gen-
eral periodic objects and to n-dimensional space, one obtains the following
definition:
Definition: An object in n-dimensional point space En is called an n-dimensional
crystallographic pattern or, for short, crystal pattern if among its symmetry
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2 CHAPTER 1. THEORY AND EXPERIMENTAL METHODS

(i) there are n translations, the translation vectors t1, ..., tn of which are
linearly independent,

(ii) all translation vectors, except the zero vector 0 , have a length of at least
d > 0.

Condition (i) guarantees the n-dimensional periodicity and thus excludes sub-
periodic symmetries like layer groups, rod groups and frieze groups. Condi-
tion (ii) takes into account the finite size of atoms in actual crystals.

- International Tables of Crystallography A, IUCr [39]

According to this a fundamental property of any crystal is the presence of a periodic
structure, leading to a long-range order. In 1982 Shechtman et al. unintentionally
opened a discussion on the validity of this definition with a publication titled: Metallic
phase with long-ranged orientational order and no translational symmetry [87]. Giving
rise to the question: Can there be order devoid of symmetry? Roughly ten years later a
preliminary definition was proclaimed by the Commission on Aperiodic Crystals of the
International Union of Crystallography (IUCr).

In the following by ‚crystal‘ we mean any solid having an essentially discrete
diffraction diagram, and by ‚aperiodic crystal‘ we mean any crystal in which
three-dimensional lattice periodicity can be considered to be absent.

- Commission on Aperiodic Crystals, IUCr [46]

As a matter of form the answers to the solicited questions:

Yes, there can be order despite the lack of symmetry!

If it shows a discrete diffraction image it is considered a crystal!

The IUC’s preliminary definition is rather pragmatic and is being discussed. There are
some as interesting as amusing letters on this discussion printed in the Zeitschrift für
Kristallographie 222 (2007), pp. 308-319, which I recommend for further reading. Since
no aperiodic crystal has been under investigation in this work henceforth crystal refers
to a periodic structure with long-range order. I would like to close this section with a
quotation taken from one of the letters mentioned above:

Throughout it all I wondered, who cares? Whatever its label, Pluto still circles
the sun, and planetary scientists still study it.

- Marjorie Senechal, Zeitschrift für Kristallographie 222 (2007), p. 311, [86]

1.2 Lattice, basis and reciprocal space

Having defined what hereby is meant with crystal, the subsequent question can be
approached. How can a crystal be described? Two things are needed two describe a
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1.2. LATTICE, BASIS AND RECIPROCAL SPACE 3

crystal or better a crystalline structure. The lattice and the basis or pattern. The lattice
describes the long-range order in a crystal for example SC (simple cubic), BCC (body
centred cubic) or FCC (face centred cubic). In three dimensions the lattice consists
of three, so called, primitive vectors, each of it lying in a different plane, which span
the lattice. Within the definition of a crystal given by the IUCr a primitive vector is
a special translational vector, as it is the smallest. All other translational vectors a
integral multiples of the primitive vector. The first to publish this notation was Auguste
Bravais in 1850 [11], hence it is called a Bravais lattice and is mathematically described
by with the lattice points �Rn defined as

�Rn = n1 �a1 + n2 �a2 + n3 �a3 (1.1)

whereby ni can be any integer and �ai is one of the primitive vectors. This makes a
lattice to be an infinite array of points in space. The Bravais lattice can by described as
a function of the position vector �r by a delta function and the Bravais lattice �Rn itself,
i.e.

ρ(�r, �Rn) =

N∑
n=1

δ(�r − �Rn), (1.2)

which can be interpreted as the probability to find a lattice point at a given position,
hence it is labelled ρ. In total there are 14 different Bravais lattices. The rhombohedron
spanned by the three primitive vectors is called primitive unit cell . Its volume Vuc can
be calculated by

Vuc = �a1( �a2 × �a3).

A unit cell is called primitive when it contains only one lattice point, i.e. when it is
spanned by the primitive vectors, see left hand side of Figure 1.1. A special primitive
unit cell is the Wigner-Seitz cell . Any point within the Wigner-Seitz cell is closer to the
lattice point in its centre than it is to the neighbouring lattice points, see right hand
side of Figure 1.1. Though the mathematical description of this kind of tessellation of
an euclidean space dates further back, Eugene Paul Wigner and Frederick Seitz where
the first to apply it in the field of physics [113].

In order to create a crystal one needs a basis or pattern which describes the position of
the atoms attached to each point �R given by the lattice. Figure 1.2 shows a lattice, a
basis and the crystal described by them.

Practically every author of every book concerning solid state physics puts the cart before
the horse by introducing the reciprocal lattice at this point. Despite knowing better and
the lack of a good reason I will do so as well. The reciprocal lattice �Ghkl can be written
as:

�Ghkl = h�g1 + k �g2 + l �g3. (1.3)

Where (h, k, l) are the miller indices. Like their real-space counterparts ( �a1, �a2, �a3) the
primitive reciprocal vectors (�g1, �g2, �g3) are linear independent of each other and can be
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4 CHAPTER 1. THEORY AND EXPERIMENTAL METHODS

Figure 1.1: Primitive unit cells. The blue coloured diamonds mark the primitive unit cells
spanned by the primitive vectors, whereas the magenta coloured polygons mark the Wigner-
Seitz cells. The boundaries of the polygon are perpendicular to the lines (dashed) connecting
neighbouring lattice points and intercept them in the middle.

Lattice

+

Basis

=

Crystal

Figure 1.2: Construction of a generic crystal by lattice and basis. From left to right: The
underlying lattice ( ) and its primitive vectors ( , not necessarily perpendicular to each
other). The basis consisting of two atoms ( ). The resulting crystal and its primitive unit
cell ( ).

calculated from the primitive real-space vectors using:

�g1 =
2π

Vuc
( �a2 × �a3), �g2 =

2π

Vuc
( �a3 × �a1) and �g3 =

2π

Vuc
( �a1 × �a2).

The Wigner-Seitz cell of the reciprocal lattice is called Brillouin zone (BZ) named after
Nicolas Lèon Brillouin, who developed this concept and published it in 1930 [12]. Though
of no major importance in real-space, the Wigner-Seitz cell in reciprocal space, i.e.
Brillouin zone, is of utmost importance, since it contains information about whether a
crystal is of a conducting, semi-conducting or insulating nature.
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1.3. SURFACE RECONSTRUCTIONS 5

1.3 Surface reconstructions

God made the bulk; the surface was invented by the devil.

- Wolfgang Pauli

Let’s have a look at the devils work! Since this work is about surface science and mass
is not infinite, we usually examine crystals that have finite dimensions. The perfect
symmetry of a crystal is broken right where it ends, at its surface.

In order to minimize it’s free energy the surface reconstructs itself in a totally new -
and most of the time a lot more complicated - way than the bulk crystal. A, so called,
surface reconstruction evolves. There are other ways to change the face of a surfaces
once it has been created. One is to deposit atoms on the surface which, most of the
time, leads to a different reconstruction again because of natures pet issue the energy
minimization. Heat can lead to a change of the surfaces reconstruction as well. In order
to allow for discussions about surfaces the following question has to be answered: How
can a surface reconstruction be described?

1.3.1 Park & Madden’s notation

A possible way to describe a reconstruction is given by Park and Madden [72]. The
simplest surface, i.e. the one with the smallest primitive unit cell, is the bulk terminated
surface. As a surface is two-dimensional the translational vectors �T can be described by
a linear combination of two linear independent primitive vectors:

�T = n1 �a1 + n2 �a2.

Depending on the surface normal the two vectors may even be two of the primitive
vectors of the lattice. For instance in case of a (100) surface of a simple cubic crystal
the two primitive lattice vectors lying in the surface plane are the two primitive vectors
describing the translational symmetry of the bulk terminated surface. By undergoing a
reconstruction the surface enlarges its unit cell in order to lower the surface energy.

The geometrical relation between bulk terminated and reconstructed surface can be
described by a matrix M :

�b1 = m11 �a1 +m12 �a2
�b2 = m21 �a1 +m22 �a2

⇔
(

�b1
�b2

)
= M

(
�a1
�a2

)
,

M =

(
m11 m12

m21 m22

)
.

Where �ai are the translational vectors of a bulk terminated and �bi the translational
vectors of the reconstructed surface. The determinant of the matrix M can be used
to describe the relationship between the bulk terminated and the reconstructed sur-
face.
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a) b) c)

Figure 1.3: View on top of a fcc(100) surface. a) Bulk terminated fcc(100) surface. The
primitive unit cell ( ) is depicted in magenta as well as primitive unit vectors ( ). In Wood’s
notation a surface of that kind shows a (1×1) reconstruction. b) The blue balls ( ) indicate
some kind of adsorption. The adsorbates change the periodicity into a (2×2) reconstructed
surface. c) In this case there are two ways to describe the reconstruction: c(2×2) (unit cell
denoted by ) or (

√
2×√2)R45 (primitive unit cell denoted by ). The ‚c‘ prior to the

periodicity denotes the centred unit cell.

If( detM ∈ Z )

it is called simple
else if( detM ∈ Q )

it is called coincident
else

it is called incommensurate
endif.

Though it is a precise method, it is not very convenient, as the determinant itself only
carries information about the ratio between unit cell sizes and writing the complete
matrix is laborious. In most books and publications as well in this work a different
notation is used:

1.3.2 Wood’s notation

Due to its convenience, Wood’s notation [115] is by far more common. Within this
notation a reconstruction is given by:

X(hkl)(a1 × a2)Rφ−A

Where X denotes the substrate and (hkl) are the miller indices indicating the surface
normal in terms of the crystal axis. a1 and a2 indicate the length of the unit cell vectors
in units of the underlying substrate surface unit cell vectors. Sometimes the adsorbate
reconstruction is rotated compared to the substrate reconstruction which is indicated by
the presence of R followed by the degree of rotation φ. Finally the adsorbate is given by
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a) b) c)

Figure 1.4: Generic scattering paths of electrons or waves, respectively. a) Single scattering;
the probe interacts only once with the sample or lattice. b) Double scattering; the probe
interacts twice with the sample. c) Multiple scattering; the probe interacts multiple times
with the sample. Incident paths are depicted in magenta. Paths after the first scattering
event are depicted in blue.

A. In some cases Wood’s notation is not bijective, e.g. see Figure 1.3 c). Despite this,
given minor drawback, this is the notation being used throughout this work.

Sometimes Wood’s notation gets abbreviated. Especially when it comes to this work’s
subject the (8×2) reconstruction, which is often denoted as a (8×’2’) or a (8×„2“) recon-
struction. The quotation or single quotation marks are supposed to indicate the striped
nature of the reconstruction. I will refrain from doing so.

1.4 Kinematic theory of diffraction at ...

Obviously, even allowing for a refraction and change of wavelength due to in-
ner potential, a purely kinematic theory of electron diffraction is incomplete;
indeed it is great good luck that it explains as much as it does, for a proper
dynamic theory is far harder.

- Sir George Thomson, Contemporary Physics 9, p. 13, [101]

So far notations for the description of surfaces and lattices have been introduced. This
section will focus on the question: How does a diffraction pattern look like for a given
crystal or surface structure? One of the simplest approaches is the Kinematic Diffraction
Theory. In Figure 1.4 some distinctive ways for probes to reach the detector are shown.
Only the case shown on the left, i.e. the single scattering path, is taken into account.
Though later electrons will be used for probing and since diffraction is an interference
phenomena, it has to be explained using waves.
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φi(�ki)

φf
(�kf

)

φ(k, r)

Figure 1.5: Scattering at a singe atom. The incident plane wave φi(�ki) is scattered at a
atom. Resulting in a spherical wave φ(k, r) being emitted by the scatterer. Far away from
the emitter the spherical wave can be approximated by another plane wave φf (�kf ). This
approximation is justified in an experimental context where the aperture of the detector is
small compared to the distance between sample and detector. Wave fronts are depicted by
blue and magenta lines, respectively.

1.4.1 Single scatterers

Consider a plane-wave φi(�ki) with wave vector �ki being elastically scattered by an atom
placed at �r0. The result is a spherical wave φf with wave number kf being emitted
from point �r0 (see Figure 1.5). Since only elastically scattered electrons are taken into
account the wave number does not change (ki = kf = 2π/λ). The amplitude of the
emitted wave does not show a spherical symmetry. Depending on initial wave vector
�ki and observed direction �kf the wave’s amplitude varies. This variation originates in
the scattering potential V (�r) of the scatterer, i.e. the atom, and is described by the so
called atom-form-factor f(ki, kf ) which is given by

f(�ki, �kf ) =

∫
φ∗fV (�r)φi d3r

where the initial wave

φi = ei(
�ki·�r)

and the final, i.e. scattered, wave

φf = f(�ki, �kf )e
i�kf |�r−�r0|.

The atom-form-factor for electrons scattering at a single atom will mainly depend on the
charge distribution ρ(�r) of the atom. The atom-form-factor is not our main interest, since
we are interested in diffracting electrons at a lot of atoms and I will not go into further
details. To make things short the scatterer is placed on the origin (�r0 = 0). Furthermore,
since any measurement will take place far away from the sample (r � r0), the scattered
spherical wave can be approximated by a plane wave, leaving φf to be:

φf = f(�ki, �kf )e
i�kf ·�r
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This approximation is justified in an experimental context where the aperture of the
detector (≈ μm) is small compared to the distance between sample and detector (≈
dm). A simple and perhaps more accessible analogy to the diffraction of an electron
wave at an atom is the diffraction of a laser beam at a slit. In case of a basis being the
scatterer the atom-form-factor includes every atom within the basis.

1.4.2 Undistorted lattices

Instead of scattering at a single atom, consider the wave φi to be scattered at a basis,
made of J different atoms. The scattered wave φf is then given by:

φf =

J∑
j=1

fj(�ki, �kf )e
i�kf ·�r

The atom-form-factor f is now indexed to take into account that it is different for each
species of atom in the basis. Notice that the different positions of the basis atoms which
would lead to a phase shift of the scattered waves φf with respect to each other is
completely ignored, i.e. implicitly included in the atom-form-factor fj.

Consider a Bravais lattice �Rn as in equation (1.1), choosing any point of the lattice as
the origin, i.e. �r0. The wave ψf,0 scattered at �r0 is therefore

ψf,0 =

J∑
j=1

fj(�ki, �kf ) · ei�kf ·(�r−�r0).

Every point �Rn of the lattice will emit a scattered wave ψf,n similar to ψf,0. The
difference between any scattered wave ψf,n and the wave scattered at the origin ψf,0 is a
phase factor, which is given by the difference of the dot-products (�ki · �Rn) and (�kf · �Rn).
Introducing the scattering vector �ks which is given by �ks = �kf − �ki, the phase factor is
given by:

ei(
�kf ·�Rn−�ki·�Rn) = ei

�ks·�Rn .

The scattering vector �ks represents the change of the wave vector upon scattering. Hence
the scattered waves are given by

ψf,n = ψf,0 · ei�ks·�Rn ,

see Figure 1.6 for a schematic representation. The resulting wave ψ is the sum over all
waves ψf,n from all N lattice points, i.e.

ψ =
J∑
j=1

fj(ki, kf )
N∑
n=1

ei
�ks· �Rn · ei�kf ·(�r−�r0)
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ψf,n

ψf,0

�Rn

(�ki · �Rn)

(�kf · �Rn)

origin, �r0

Figure 1.6: The wave vector (�ki, ) of the incident wave ends on two lattice points ( ) at
which the wave is scattered. The scattered waves (ψf,0 and ψf,n) are depicted for a generic
wave vector (�kf , ). The only difference between the two scattered waves at the point of
measurement is a phase shift in between them. Remember that the point of measurement
is infinitely far away compared to the lattice vectors.

The intensity I of the diffracted wave is proportional to the density of the wave function
ψ, i.e. its magnitude squared:

I ∝ |ψ|2 = ψψ∗ =
J∑
j=1

J∑
l=1

fj(�ki, �kf )f
∗
l (
�ki, �kf )

︸ ︷︷ ︸
F (�ki, �kf )

N∑
n=1

N∑
m=1

ei
�ks( �Rn− �Rm)

︸ ︷︷ ︸
G(�ks)

I consists of two parts. The first part, depending on initial and final wave vector �ki, �kf ,
is called the dynamical-form-factor F (�ki, �kf ). The second part depends only on the
positions of the unit cells, i.e. the lattice, and the scattering vector �ks. This part is
called the lattice-form-factor G(�ks).

I ∝ F (�ki, �kf )G(�ks)

The dynamical-form-factor F (�ki, �kf ) includes the atom-form-factor, multiple scattering
processes within unit cell, position of atoms in the unit cells, etc. Unlike the lattice-form-
factor the dynamical-form-factor will not play a major role for things to come.

The lattice-form-factor contains solely information about the lattice. Assuming a perfect,
i.e. undistorted, Bravais lattice the positions �Rn can be expressed by:

�Rn = n1�a1 + n2�a2 + n3 �a3,
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