
Chapter 1

Introduction

Multicore processors have become standard in modern hardware platforms that
are used in desktop workstations, servers, clusters, mobile devices, and other
embedded systems that need a lot of computing power but that do not have
hard real-time requirements.

579

591

330

55

41 17 2

1 core
2 cores
4 cores
6 cores
8 cores
10 cores
12 cores

Figure 1.1: Number of Intel processor models separated by core count. The
data for this chart was gathered on December 05, 2013 from http://ark.
intel.com/Search/Advanced.

1Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1. INTRODUCTION

For example, if we look at Intel’s Intel 64, IA-32, and Itanium microproces-
sors starting with the Pentium III and count singlecore and multicore processors
separately as shown in Fig. 1.1, we see that multicores dominate the product
portfolio of this major microprocessor manufacturer for the desktop, server,
and cluster market segment. Since the figure also includes now outdated mod-
els from the pre-multicore era, the dominance of multicore products is even
stronger than it appears at first.

Multicore processors are also about to become the standard in many embed-
ded systems. In the mobile segment, the Samsung Exynos 5250 [97], Qualcomm
Snapdragon, and Apple A61 are system-on-chips (SoC) that are commonly used
in smartphones or tablets. These SoCs use multicores as well. In the field of
industry automation, we performed research to find out whether it is possible
to automatically parallelize legacy applications in order to make them ready
for future generations of programmable logic controllers that are also going to
use multicores [65].

To guarantee that an application makes efficient use of the multiple cores
provided by modern processors, programmers are nowadays required to develop
parallel code instead of sequential programs. Although concurrent program-
ming is now an important skill, writing parallel code has shown to be difficult
for mainly two reasons. First, it is not always obvious how an efficient paral-
lelization of a certain problem would look like. In fact, complexity theoreticians
have identified problems for which it is unknown whether they can be solved
with efficient parallel algorithms [43]. Second, while it is at times hard to write
efficient parallel programs, it is frequently just as easy to produce incorrect
parallel code, because programmers think sequentially and bugs in concurrent
programs are hard to identify and debug because of the non-determinism of
parallel code [74].

To make concurrent programming easier for non-experts, we are therefore
interested in software development techniques that involve high-level language
constructs and programming paradigms. Building abstractions from low-level
primitives and providing these abstractions as a language construct or within
a runtime system allows programmers to focus on the problem to parallelize,
while developers that are forced to write their programs using tedious low-level
primitives in order to accomplish the same task are more likely to introduce
concurrency bugs in their code. Although higher levels of abstraction reduce
the risk of errors and increase programmer productivity, these abstractions
come with a cost. If a compiler or runtime systems implements them naïvely, a
program that uses high-level constructs will perform much worse than a hand-

1Unfortunately, there are no publicly available datasheets for the latter two SoCs.

2Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. RACE CONDITIONS

optimized program that uses low-level primitives. We therefore need compiler
and runtime optimizations that reduce the overhead of high-level paradigms in
order to make them attractive to developers.

This thesis focuses on compiler and runtime techniques for an existing high-
level concurrent programming construct for shared-memory parallel programs:
the atomic block. To motivate our work, we will first give some reasons why
atomic blocks have become worthy of studying by discussing race conditions as
one root cause of concurrency bugs. We also quickly recapitulate how locks are
used to avoid race conditions, but show how an erroneous application of this
technique either does not prevent them or how it leads to deadlocks, which are
another type of concurrency bug, and how a correct but inept use of locks leads
to performance problems. Next, we present atomic blocks and their semantics,
and show why this construct is helpful to avoid race conditions and deadlocks.
We will also argue why atomic blocks cannot eliminate race conditions entirely
if a programmer manually adds them to the code. After that, we introduce
the two major techniques that are used to implement the semantics of atomic
blocks, and compare their advantages and disadvantages to see why no single
implementation technique is best. Following the introduction of atomic blocks,
we propose our contributions to remedy the problems identified and to improve
upon the state of the art. We describe a compiler analysis that automatically
infers atomic blocks in parallel code, which helps developers to eliminate race
conditions in their programs, and a compiler and a runtime technique that
improve upon existing approaches to implement atomic blocks, leading to better
runtime performance and less memory consumption. The end of this chapter
provides the outline of this thesis.

1.1 Race Conditions

In a multi-threaded program, a race condition arises when concurrent accesses
to shared memory are not properly synchronized [90], and at least one of those
accesses is a write. Race conditions can lead to unexpected program behavior if
programmers assume that the unsynchronized memory accesses will happen in
a particular order. Since the order of the concurrent memory accesses depends
on the timings of the threads performing them, program failures due to race
conditions seem to appear randomly, which makes them hard to reproduce and
to debug.

Let us examine the code in Fig. 1.2 to illustrate this concept. The code
contains two functions, f and g that are concurrently executed by two different

3Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

NS

1. INTRODUCTION

int a = 3 , b = 3 ;

void f () {
a−−;
b++;
assert ((a + b) == 6) ;

}

void g () {
b−−;
a++;
assert ((a + b) == 6) ;

}

Figure 1.2: Multi-threaded code with race conditions.

int a = 3 , b = 3 ;

void f () {
int tmp1 = a − 1 ;
a = tmp1 ;
int tmp2 = b + 1 ;
b = tmp2 ;
assert ((a + b) == 6) ;

}

void g () {
int tmp3 = b − 1 ;
b = tmp3 ;
int tmp4 = a + 1 ;
a = tmp4 ;
assert ((a + b) == 6) ;

}

Figure 1.3: Transformed multi-threaded code with race conditions.

threads. They increment and decrement two shared variables a and b that are
both initialized to 3, and at the end of each function, we want the invariant
a+b = 6 to hold. This program contains several race conditions since due to the
concurrent execution of the functions, the memory accesses can be interleaved
in any order. To see this, we transform the original code into the code in Fig. 1.3
in order to make the intermediate steps of the increment/decrement operations
visible. If we now assume that f and g are executed concurrently, there are
interleavings where the code behaves correctly, but there is also at least one
order of memory accesses that leads to values for a and b that violate the
invariant that we stated before. For example, if the memory accesses happen
in the order given in Fig. 1.4, the invariant is satisfied and the program runs
correctly. However, if the memory accesses are performed in the order shown
in Fig. 1.5, the invariant is violated.

To make the program behave correctly in all cases, we need to ensure that
the memory accesses of one function are not interleaved with the accesses of
another function. The accesses of every function form critical sections. At any
time, at most one thread may execute within a critical section.2 If we declare
each of the bodies of f and g as a critical section, then the accesses to the
shared variables are coordinated in a way that eliminates interleavings that

2We can relax this definition a little: we can allow two critical section to execute concur-
rently if they access disjunct parts of the shared data.

4Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.1. RACE CONDITIONS

int a = 3 , b = 3 ;

void f () {

tmp1 = a − 1 ;
a = tmp1 ;

tmp2 = b + 1 ;
b = tmp2 ;

assert (. . .) ;
}

void g () {
tmp3 = b − 1 ;
b = tmp3 ;

tmp4 = a + 1 ;
a = tmp4 ;

assert (. . .) ;
}

// a : 3 , b : 3
// a : 3 , b : 2
// a : 3 , b : 2
// a : 2 , b : 2
// a : 2 , b : 2
// a : 3 , b : 2
// a : 3 , b : 2
// a : 3 , b : 3
// a : 3 , b : 3 , inv . s a t i s f i e d
// a : 3 , b : 3 , inv . s a t i s f i e d

Figure 1.4: Memory access ordering that leads to correct behavior for the
program of Fig. 1.3. The functions f and g execute concurrently and time
progresses from top to bottom. The comments show the values of the variables
after every statement.

int a = 3 , b = 3 ;

void f () {

tmp1 = a − 1 ;

a = tmp1 ;

tmp2 = b + 1 ;
b = tmp2 ;
assert (. . .) ;

}

void g () {
tmp3 = b − 1 ;
b = tmp3 ;

tmp4 = a + 1 ;
a = tmp4 ;

assert (. . .) ;
}

// a : 3 , b : 3
// a : 3 , b : 2
// a : 3 , b : 2
// a : 3 , b : 2
// a : 4 , b : 2
// a : 2 , b : 2
// a : 2 , b : 2 , inv . v i o l a t e d
// a : 2 , b : 2
// a : 2 , b : 3
// a : 2 , b : 3 , inv . v i o l a t e d

Figure 1.5: Memory access ordering that leads to incorrect behavior for the
program of Fig. 1.3. The functions f and g execute concurrently and time
progresses from top to bottom. The comments show the values of the variables
after every statement.

5Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

NS

1. INTRODUCTION

violate the invariant, so that race conditions are impossible. Unfortunately, it
is hard for programmers to know where critical sections in the code are. It
may not immediately be obvious which statements of a program access shared
variables and even if developers, after careful reasoning, identified all critical
sections, modifications to the code force them to re-think about what influences
the changes have to the critical sections. The fact that the detection of all
race conditions in a program is NP-hard [90] leads us to the conclusion that
reasoning about critical sections is equally difficult indeed. As we will see in
the next section, it is also difficult to properly implement critical sections, i.e.,
to use techniques in order to coordinate accesses to shared data such that all
race conditions are avoided.

1.2 Locking

A common way to coordinate accesses to shared memory is to use locks [27]. In
their most basic variant, locks have two states, available and held and provide
the two operations lock and unlock to calling threads. A lock operation per-
formed by a thread waits until the lock becomes available and then attempts
to atomically switch the state of the lock to held. If the state-switch fails due
to a successful intervening lock by another thread, the entire operation restarts
until it eventually succeeds. After that, the lock is said to be acquired. The
unlock operation releases a held lock by marking it as available. Locks allow
threads to mutually exclude each other from entering a critical section at the
same time and are therefore useful to synchronize memory accesses in order to
prevent race conditions.

To coordinate memory accesses with locks, a programmer must know which
data needs to be protected against concurrent accesses and must decide upon a
locking solution. This includes the number of locks that should be used, which
locks to acquire in order to access certain items of shared data and the order
in which the locks are to be acquired and released. Of course, the choice of the
locking solution has influence on the performance of the software. One extreme
of this process would be to protect all shared data by a single global lock,
while the other extreme would be to use one lock per shared variable. Locking
solutions that tend to the first extreme and use few locks are coarse-grained,
while solutions with a large number of locks that are closer to the second
extreme are fine-grained. We will see that finding a good locking solution for
a given program is difficult.

6Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. LOCKING

void f () {
lock (l_ab) ;
a−−;
b++;
assert (. . .) ;
unlock (l_ab) ;

}

void g () {
lock (l_ab) ;
b−−;
a++;
assert (. . .) ;
unlock (l_ab) ;

}

(a) Coarse-grained,
correct.

void f () {
lock (l_a) ;
a−−;
lock (l_b) ;
b++;
assert (. . .) ;
unlock (l_a) ;
unlock (l_b) ;

}

void g () {
lock (l_b) ;
b−−;
lock (l_a) ;
a++;
assert (. . .) ;
unlock (l_b) ;
unlock (l_a) ;

}

(b) Fine-grained,
contains deadlock.

void f () {
lock (l_a) ;
lock (l_b) ;
a−−;
b++;
assert (. . .) ;
unlock (l_a) ;
unlock (l_b) ;

}

void g () {
lock (l_a) ;
lock (l_b) ;
b−−;
a++;
assert (. . .) ;
unlock (l_a) ;
unlock (l_b) ;

}

(c) Fine-grained,
correct.

Figure 1.6: Examples of correct and incorrect locking approaches for the code
of Fig. 1.2.

bodies of f and g each form a critical section of their own. Fig. 1.6 contains
one incorrect and two correct implementation attempts for the critical sections
with different granularities and placement strategies for the lock and unlock
statements. The first decision we need to make is how many locks to use. With
a coarse-grained approach (one lock for all shared variables) as in Fig. 1.6(a),
the placement of the lock/unlock statements becomes straightforward: they
must be at the start/end of the critical section to ensure that the data accesses
are coordinated. It is relatively easy to verify that the invariant a+b = 6 always
holds when all threads are at the end of their critical section and that the coarse-
grained implementation attempt is therefore correct. On the other hand, using
fine-grained approaches (one lock per shared variable) as in Fig. 1.6(b-c) leads
to more possibilities of placing the lock/unlock statements and as we shall see,
increases the probability that a programmer writes incorrectly synchronized
code.3 The code in Fig. 1.6(b) acquires a lock just before the corresponding

3Admittedly, using one lock per variable in this example is not necessary, since acquiring
a second lock is redundant: whenever l_a is acquired, l_b will be acquired as well. But the
example nevertheless allows us to illustrate some important concepts.

7

Let us illustrate this theoretical concept with the code of Fig. 1.2. The entire

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

NG

1. INTRODUCTION

variable is accessed and releases all locks at the end of the critical section.
This code however, contains a bug known as deadlock [21]. In our setting, a
deadlock is a situation where two or more threads mutually wait for each other
to release a lock that is held by the other thread, such that all threads are
blocked forever. For example, assume that both f and g start simultaneously.
Function f immediately acquires l_a and g immediately acquires l_b. Now
both functions proceed and f tries to acquire l_b, which is currently held by g.
Therefore, the thread that executes f will block until l_b becomes available.
We picture the situation that the lock operation of l_b in f blocks until the
unlock operation of l_b in g is performed with the arrow on the left. However, g
also blocks, waiting for l_a to become available, which we depict with the arrow
on the right. Since f and g circularly wait for each other, both threads block
forever. Thus, it is important that the locking strategy is designed in a way
that the order of the locking operations does not lead to deadlocks. However,
it is easy to introduce deadlocks in the code, since the order in which locks will
be acquired is not always obvious. As deadlocks occur only sporadically due
to the non-deterministic timing-behavior of threads, they are hard to debug.

Fig. 1.6(c) shows a correct fine-grained locking solution that avoids dead-
locks. The key is to lock and unlock all locks at the start and end of the critical
section. Additionally, the locks are acquired in a fixed order. Since both critical
sections acquire l_a first and l_b afterwards, there is no circular dependence
between the locking operations, and therefore f and g will never both at the
same time infinitely wait for the other thread to release a lock.

Unfortunately, the technique we use to avoid deadlocks in Fig. 1.6 is not
applicable in general since it might not be known up-front which shared vari-
ables the critical section accesses. Furthermore, deadlocks are not the only
bugs that an incorrect locking strategy may cause. Other mistakes program-
mers could make are to forget acquire a lock, which leaves the critical section
vulnerable to race conditions or to forget an unlock operation, which would
cause that the lock could never be acquired again, causing threads to block
forever. Furthermore, as software evolves, e.g., we change a critical section to
access an additional shared variable, we need to rethink our locking solution,
which may introduce new errors. Although coarse-grained locking tends to
reduce the risk of introducing bugs, it is not a satisfying approach. Since we
want to exploit the computing power of multicore processors, we need to be
concerned about performance as well. If a program contains a large number
of critical sections, coarse-grained locking limits the number of threads that
can execute concurrently. In the worst case, there is no concurrency at all and
most of the computing power of the parallel hardware is wasted. In general,

8Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. A PART OF THE SOLUTION: ATOMIC BLOCKS

fine-grained locking leads to more performance since two critical sections that
access disjunct areas of the shared data can execute concurrently if the critical
sections use different locks.4

While we have focused on locking as an implementation technique for crit-
ical sections, alternative implementations for concurrent data structures such
as non-blocking algorithms are not suited for average programmers either. We
will discuss non-blocking algorithms in more detail in Chapter 2, but in short,
non-blocking algorithms use sequences of atomic read-modify-write instruc-
tions to update shared data and thus several threads can operate on the same
data structure without waiting for each other. Non-blocking algorithms are
attractive because they never deadlock and they allow more concurrency than
coarse-grained locking, but it is hard to design algorithms that are free of race
conditions, even for simple data structures [28]. A preferable approach would
be to only mark regions in the code that must be protected against race con-
ditions, but leave their correct and efficient implementation to the compiler or
runtime. This idea leads us to the discussion of atomic blocks.

1.3 A Part of the Solution: Atomic Blocks

Since locking and other synchronization techniques are difficult to use prop-
erly, atomic blocks have been invented to simplify synchronization matters in
parallel programs. The semantics of an atomic block state that all accesses to
shared memory within the atomic block appear to happen at once, such that
intermediate states within the blocks are invisible to other threads. This causes
the execution of atomic blocks to be serialized, i.e., if two atomic blocks A and
B are executed concurrently by two threads, then A and B do not interleave:
A cannot observe any intermediate changes that B makes to shared variables
and vice versa, since one of the atomic blocks is guaranteed to finish before
the other one starts. Since the implementation of these semantics is left to the
compiler or runtime system, programmers do not have to worry about dead-
locks. We can therefore easily synchronize the memory accesses in our example
code of Fig. 1.2 if we put each of the bodies of f and g in a separate atomic
block as shown in Fig. 1.7. Then both functions instantly update a and b and
the invariant holds at all times.

4Since the critical sections of our example do not access disjunct data, fine-grained syn-
chronization will not perform better in this case.

9Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

KS

1. INTRODUCTION

void f () {
atomic {
a−−;
b++;
assert ((a + b) == 6) ;

} }

void g () {
atomic {
b−−;
a++;
assert ((a + b) == 6) ;

} }

Figure 1.7: Example code
of Fig. 1.2 synchronized with
atomic blocks.

To the best of our knowledge, the concept
of atomic blocks has its origins in a 1976 pub-
lication from Eswaran that introduces transac-
tions in data base systems [34]. Lomet was the
first to add atomic blocks to a programming
language in 1977 [72]. However, the implemen-
tation of atomic blocks that Lomet describes
does not include a method to prevent dead-
locks. But since then, atomic blocks have re-
cently gained more momentum since new imple-
mentation techniques have been invented that
prevent deadlocks and therefore make atomic
blocks more useful.

While atomic blocks do simplify concurrent
programming and increase programmer prod-
uctivity [92], we still cannot be satisfied with the current state of the art for
two reasons. First, it is still too difficult to add atomic blocks to all places
in the code where they are necessary to make a concurrent program behave
correctly and second, we would like the implementation of atomic blocks to be
more efficient than what current techniques achieve.

The problem with atomic blocks is that it still requires programmers to
add them to the code. But to place them in the software, developers need
to know where race conditions in their programs may happen, so knowing
where atomic blocks are is the same as knowing where the critical sections are
in the code. Forgetting to add atomic blocks in the right places can therefore
still lead to concurrency bugs. As we have seen, correctly identifying all critical
sections in a program is difficult. What we really need is tool support that helps
programmers to add atomic blocks to the code. While there are approaches
that automatically detect atomic blocks, they still require specifications from
the programmer to work, such as marking which fields of an object need to be
accessed atomically. Ideally however, such a tool needs as little intervention
from the programmer as possible.

Besides that, we are also concerned with an efficient implementation of
the atomic blocks that a tool or a programmer added to the code. Two cur-
rent techniques to implement atomic blocks are software transactional memory
(STM) [100] and lock inference [17]. Transactional memory is an optimistic
parallelization approach that can be implemented in hardware or software.
Regions of code that need to access data atomically run as transactions: all
reads or writes are performed tentatively and updates to memory are only com-

10Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

