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Another important factor that has a strong influence on the properties of a 

nanostructured material is the method of production [Gle 1995]. Different processing 

routes have been used to synthesize nanostructured materials. Each of the processing 

methods leads to some differences in the microstructure of the nanocrystalline phases 

despite having the same composition and even the same grain/crystallite size. For example, 

the structure of the grain-boundaries is different in nanomaterials produced by 

electrodeposition with respect to the corresponding nanophases processed by methods 

based on severe plastic deformation (SPD). The grain-boundaries of SPD-processed 

nanomaterials comprise stronger strain fields and, consequently, an excess free energy 

compared to nanostructured materials produced by electrodeposition. As a result, 

nanomaterials processed by different techniques may exhibit dissimilar properties. 

The way nanostructures are formed or, more precisely, the mechanism of 

nanostructure formation, can be very different even for a given method of production. For 

example, nanostructures may be produced during ball milling through partitioning of initial 

large grains, i.e. through structural decomposition [Fec 1995 and Koc 1997], or they can 

be generated through nucleation and growth of new grains, i.e. by dynamic 

recrystallization [Zha 2001 and Zha 2002b]. The inherent properties of the materials can 

also affect the mechanism of nanostructure formation. The stacking-fault energy (SFE) is a 

factor that can significantly influence the mechanism of grain refinement. This is because 

the variation of the SFE influences the dislocation structure and the recovery process [Uek 

1987].  

This thesis deals with these issues experimentally by clarifying the effect of the 

SFE on the mechanism of nanostructure formation during ball milling at cryogenic 

temperature (i.e. cryomilling). For that, structural analysis and the characterization of the 

lattice defects during cryomilling have been investigated for pure Cu, and Cu-Al and Cu-

Zn alloys using different analytical techniques, including X-ray diffraction (XRD), 

scanning (SEM) and transmission (TEM) electron microscopy. These materials were 

selected because the addition of Al and Zn to Cu is known to decrease the SFE [Fre 2010].  

The thesis is structured as follows: Chapter 2 introduces the different types of 

nanostructured materials, the methods used for their preparation and the different aspects 

characterizing their structure. Details on the thermal stability of nanostructured phases and 

their consolidation are discussed along with the physical and mechanical properties of 

these fascinating materials. Finally, a brief summary of the deformation behavior is given 
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in the final part of Chapter 2. Details about sample preparation and characterization 

methods used in the present thesis are presented in Chapter 3.  

In Chapter 4, the results obtained by XRD, SEM and TEM, the most commonly 

used tools for the characterization of nanostructured materials, are critically discussed, 

with specific focus on the evaluation of the grain/crystallite size. Chapter 5 presents a 

comprehensive investigation of the mechanisms of nanostructure formation during 

cryomilling of Cu-based alloys as a function of the SFE. This includes the quantification of 

the different types of lattice defects and their evolution during cryomilling by XRD 

analysis combined with the detailed investigation of the defected microstructure by TEM. 

The thermal stability of the nanocrystalline powders, which is a crucial aspect for retaining 

the nanostructure during powder consolidation, and the evolution of the lattice defects as a 

function of temperature is reported in Chapter 6 along with the mechanisms responsible for 

the grain coarsening. Finally, the conclusions drawn from this work are given in Chapter 7. 
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2- Nanostructured materials consisting of crystallites with different chemical 

composition. Example of such structures are quantum well (multilayer) structures 

[Gle 2003]. 

3- The chemical composition of crystallites and interfacial regions are different. In 

these structures, one type of atoms segregates to the boundary regions. 

Nanostructured W with segregated Ga atoms at grain-boundaries is an example of 

such materials (third category) [Gle 2003]. 

4- Nanometer-sized crystallites, including layers, rods or equiaxed nanocrystals that 

are dispersed into a matrix with a different chemical composition. Materials 

obtained by precipitation hardening, in which the size of precipitates is in the 

nanometer range, belong to this group [Gle 2003]. 

 

2.2 Synthesis of nanostructured materials 

Nanostructured materials can be synthesized using a variety of different methods. It 

is important to mention that the properties of nanostructured materials strongly depend on 

the method of production as well as on their thermal history [Gle 1995]. In general, the 

processing routes for the production of nanostructures can be divided into two main 

categories: (a) bottom-up and (b) top-down processes. 

In bottom-up processes, nanostructures are obtained from their atomic and 

molecular constituents through self-organized growth. Inert-gas condensation [Gle 1989 

and Sur 2000], sol-gel processing [Mac 2007], devitrification of amorphous phase [Lu 

1996, Sur 2000, and Yos 1988], chemical vapor deposition (CVD) [Sta 2009, Wei 2010], 

plasma or flame spraying synthesis [Fen 2008], laser pyrolysis [Jia 2010], electrochemical 

processes [Che 1994a, Gom 1997, Yos 1998, Mat 2004, Wan 2005, Ish 2011] and atomic 

or molecular condensation [Xia 2004] are different types of bottom-up processes. Among 

these techniques, the deposition methods (e.g. electrodeposition) have been used 

extensively to produce nanostructured stripes that can be tested mechanically in tension 

[Lu 2004, Zha 2004a, Zha 2004b, Han 2005c, She 2005, Tao 2006, Liu 2009]. The main 

limitation of this method is the small thickness of the deposited nanostructures. 

The second group of production methods, i.e. nanostructure formation by the top-

down approach, is based on the structural decomposition of coarse-grained materials. 

Within this group, methods based on severe plastic deformation (SPD) are the most used. 

The main advantage of SPD is that, through this method, in most cases the dimensions of 

the bulk nanocrystalline specimens are preserved. Some of the important processes based 
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on severe plastic deformation include: high pressure torsion (HPT) [San 2011], equal-

channel angular pressing/extrusion (ECAP/ECAE) [Zhu 2003], multiple forging [Gou 

2007, Zha 2009], accumulative roll bonding (ARB) [Sai 1999], repetitive corrugation and 

straightening [Hua 2001, Hua 2004], friction stir welding (friction stir process) [Hu 2008, 

Kwo 2003a, Kwo 2003b, Lee 2006,], continuous confined strip shearing (C2S2) [Huh 2004, 

Kan 2008], twist extrusion [Ber 2007, Bey, 2009, Var 2008], cyclic extrusion compression 

[Ric 1999, Ric 2005], and ball milling (BM) [Koc 1997]. Although the nanostructured 

products obtained by ball milling are in powder form, BM is considered an SPD-based 

method because the powder particles undergo considerable plastic deformation during 

processing. 

The most important features of selected bottom-up and top-down processes for the 

synthesis of nanostructured materials are summarized in the following.  

 

- Electrodeposition:  

In this process, thin layers of a material are deposited from an electrolyte on a 

substrate by the application of an electrical potential [Erb 1995 and Sur 2000]. The process 

variables during electrodeposition (e.g. composition of the electrolyte, current density, pH, 

and temperature of the bath) can be adjusted in order to produce artifact-free 

nanostructures [Erb 1995 and Sur 2000]. For that, the electrodeposition conditions should 

be selected in such a way that nucleation is favored over grain growth [Sur 2000]. 

 

- Inert gas condensation: 

In this method, a metal is firstly evaporated inside a chamber. The atmosphere of 

the chamber is cleaned before the initiation of the process by evacuating to very high 

vacuum followed by filling the chamber with an inert gas [Gle 1989, Gra 1976, and Sur 

2000]. The pressure of the inert gas is typically in the order of a few hundreds Pascals. The 

evaporated metal atoms lose their kinetic energy by the collision with the inert gas atoms 

and, therefore, condense to form individual crystals with size of a few nanometers [Sie 

1993, Sur 2000]. The fine nanocrystalline powder is then gathered into a collector device 

from where it is transferred to a compaction unit to form a consolidated nanocrystalline 

bulk. The compaction is generally done in two stages [Gle 1992a]. In the first stage, a green 

compact is produced by applying low pressures. The green compact is then moved to a 

high pressure unit in which final compaction is accomplished [Gle 1992a]. Powder 
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handling, transfer, and consolidation are carried out under ultra-high vacuum to avoid 

trapping of gas atoms within the consolidated bulk [Gle 1992a, Sie 1990, and Sur 2000]. 

 

- Devitrification of amorphous phases: 

This method is based on the crystallization of an amorphous phase [Lu 1996 and 

Yos 1988]. Different methods are used to obtain the initial amorphous material. Rapid 

solidification from the molten state, ball milling, vapor deposition, and electro deposition 

are examples of these methods. However, rapid solidification from the liquid state is 

generally preferred as it can provide relatively large specimens [Sur 2000]. The 

crystallization of the amorphous phase has to be controlled precisely in order to promote 

high nucleation rates and low growth rates [Lu 1996, Yos 1988]. Consequently, a 

nanocrystalline material is obtained after crystallization. Porosity-free samples can be 

synthesized using this method. It is also capable of producing large amounts of 

nanocrystalline samples with different grain sizes. This is achieved by controlling the 

crystallization conditions [Lu 1996, Sur 1995, and Yos 1988].  

 

- Equal-channel angular pressing (ECAP): 

In this process, a billet is forced to pass through a die that contains two channels 

[Mey 2006 and Val 2000]. These channels have the same cross-section but different 

orientation (see Fig. 2.3). The amount of deformation depends on two factors: (1) the angle 

between the channels, ϕ, and (2) the angle of the outer arc of the curvature, ψ [Mey 2006]. 

The advantage of this method is that the sample can be repeatedly pressed through the die 

as the dimensions of the cross-section of the sample are preserved. This makes it possible 

to apply large amounts of strain using this technique. The grain size of materials processed 

using ECAP is generally in the ultrafine-grained regime. However, grain sizes down to 50 

nm have been obtained for large numbers of passes [Mey 2006]. 

 

- Ball milling: 

Ball milling is a versatile process that is capable of producing nanostructures in a 

wide range of chemical composition and crystal structures [Fec 2002]. In this process, the 

raw materials in the form of powders are charged into a container (i.e. the milling vial) 

together with the milling media (generally stainless steel or tungsten-carbide balls). The 

impact energy of the milling balls is the tool to convert raw materials to products [Jan 

2005, Sur 2001] (Fig. 2.4). Ball milling can be divided into two different categories 
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