
Chapter 1

Introduction

Project GrindBall is an applied research project sponsored by the German Research

Foundation (DFG) as part of the work-group Small Machine Tools (SPP 1476) involving

simulation, electro-magnetic control, and manufacture of a miniature abrading device.

The workload in this project is hence distributed across three institutes: computational

simulation is conducted at the Center of Applied Space Technology and Microgravity

(ZARM), the electro-magnetic control element is developed at the Institute for Electrical

Drives, Power Electronics and Devices (IALB), and manufacture of the tool itself is

undertaken by the Laboratory for Precision Machining (LFM).

1.1 Motivation

Miniaturisation is of great importance in many fields such as mechantronics, optics, or

medicine as it enables new functionality or makes processes more economical [BRB+13].

Micro-grinding, for example, can be performed with extremely high precision. While

this increasing precision [DMT06] has made it possible to produce smaller and smaller

workpieces, the tools used to work on them have, for the most part, remained con-

stant in size [WRK10]. The skewed ratio of tool size to workpiece size is creating a

growing ecological, economic, and technical inefficiency regarding respective processes

[WGKK12]. Until now, miniaturising existing tools has been performed in order to com-

bat said skewed ratio. This approach is, however, reaching its limits regarding technical

feasibility and usefulness [ASB10]. For this reason, new innovative concepts and tools

need to be developed, which are specifically designed to cope with small workpieces and

spatially confined environments, in order to make progress in production processes such

as micro-machining and ultra precise machining. It has already been shown that new

operating principles and technologies present innovative methods of miniaturisation that

supersede a mere reduction in size of pre-existing tools [BRB+13, DMK12]. This field

possesses a lot of potential in terms of research and development of new tools which will

be capable of outperforming currently available technologies. Workspace utilisation and

energy requirements can still be vastly improved upon. Furthermore, the tools’ susceptib-
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CHAPTER 1. INTRODUCTION

ility to thermal deformation effects can be greatly reduced as a result of their smaller size

[BRB+13]. Further direct results of miniature tools are increased flexibility and design

possibilities concerning the machining of small workpieces since micro-tools can quickly

adapt to new production procedures.

Since the ratio of surface area to volume increases dramatically with increasing mini-

aturisation, one has, proportionally, far more functional surface to work with as volume

decreases. This effect is extremely useful for abrasive tools because the control dynamics,

for example, improve with decreasing tool size, thus also improving the tools ability to

adapt to particular machining conditions [BRB+13]. Most abrasive tools used to cre-

ate micro cavities suffer from the following problem: since the axis of rotation and its

orientation to the workpiece are crucial in ensuring positive grinding results, aligning

the axis of rotation is key when grinding a cavity. A grinding pencil, for instance, has

its theoretical maximum effectiveness when the axis of rotation is parallel to the work

piece. This, however, can often be difficult to achieve as the grinding pencil’s mounting

apparatus can touch down on to the work piece before maximum effectiveness can be

reached. Also, should the axis of rotation be perpendicular to the workpiece, the grind-

ing pencil’s abrasion would tend to zero. This problem can be counteracted by tilting

the apparatus slightly, however, this still delivers mediocre results because it does not

maximise the tool’s effectiveness. Figure 1.1 illustrates the problems stated along with a

theoretical solution in which the axis of rotation is parallel to the workpiece at all times,

thus maximising the tool’s grinding efficiency. It is the goal of project GrindBall to de-

velop a spherical grinding tool, which, in addition, combines propulsion and control into

one single element. The intended result is a highly compact, precise, efficient, and adapt-

ive miniature tool, which can be used as a desktop machine for processing non-magnetic

workpieces such as glass or ceramic. Possible applications include manufacturing dentures

or miniature camera lenses as are used in modern smart phones (which require extreme

precision) to name just a few.

Figure 1.1: Grinding force depending on axis orientation
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1.2. BASIC SETUP

1.2 Basic setup

To achieve development of such a tool, fluid-driven propulsion is used in conjunction with

a ferromagnetic sphere which is either covered in an abrasive coating or made entirely

of abrasive material. It has already been shown that a variety of new production pro-

cesses can achieve pleasing results concerning the manufacture of viable grinding spheres

[BGB12, BRKB13]. In particular, injection moulding of micro-particle filled polymers

has been shown to perform well in experiments conducted by the LFM and presents a

viable option for use with the GrindBall [BRKB13].

Displacing forces are to be compensated by an adjustable opposing force, so that the

sphere is held in a predefined position relative to the shaft at all times (as seen in Figure

1.2). Such displacing forces include gravity, vibration, forces resulting from the process

of machining workpieces, and of course forces exerted by the fluid propulsion, all of which

are to be counteracted. This task is performed by a magnetic bearing, which in addition

to controlling the position of the grinding sphere, also defines an axis of rotation in

combination with the flow. Experiments and simulations conducted by the IALB have

shown that this concept can prove to meet the requirements demanded by this project and

mathematical models were derived which aid in magnetically controlling and adjusting

the position of the grinding sphere relative to the grinding shaft [Nor12, BOG+13].

The first prototype will utilise a sphere with a diameter of 40mm. Throughout the

duration of project GrindBall, this diameter is to be gradually scaled down to 1mm with

surrounding elements shrinking in proportion. The force necessary to achieve abrasion

will be applied by the fluid flow. Due to the sphere having little mass and the resulting

low moment of inertia, rotational frequencies in excess of 10,000 rpm and an extremely

high control dynamic and accuracy are to be expected. Planning and construction of the

GrindBall requires interdisciplinary cooperation between three branches of production

technology: manufacturing engineering, electrical engineering, and fluid mechanics.

Figure 1.2: GrindBall - basic setup
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1.3 Goals and limitations

This thesis begins by introducing the knowledge necessary to conduct computational

simulations in the scope of this project, i.e. by deriving the equations governing fluid

flow and stating common computational methods used in CFD simulations. Focus is

drawn to the Finite Volume Method (FVM) and the modelling of turbulence using Large

Eddy Simulation (LES). Throughout, the discussion is limited to sub-sonic flow and

the use of adiabatic walls with uniform initial temperature distribution. Supersonic flow,

heat-transferring walls, and temperature gradients on walls are best discussed once actual

grinding trails have been performed and more data is available regarding the magnetic

bearing’s capabilities, material properties, and production of heat both by the bearing

and the grinding process.

A parametric study is performed to determine the optimal configuration of a prototype

tool with a 40mm sphere using pneumatic propulsion (air). Once found, the optimal

layout is subjected to a multitude of simulations under varying volumetric flow rates and

spherical rotation frequencies, which ascertain the GrindBall ’s possibilities and limita-

tions. This includes identifying conditions for stable and efficient operation of the tool,

quantifying acting forces, and deriving mathematical models which govern the force and

power available to the abrasion process.

A fully functional version of the tool is devised with a spherical diameter of 8mm using the

knowledge gained from the development of the prototype. Parametric studies determine

an optimal propulsion fluid and further improve the geometric layout. Forces and power

are determined and discussed.

Simulation results - with specific focus on forces exerted by fluid impacting on to solid

bodies - are validated by devising and performing an experiment with which to empirically

confirm the presented findings. This is done using a setup consistent with the developed

prototype. However, moving walls, which are analogous to a rotating grinding sphere,

can not considered in the experimental setup.

Finally, a study is carried out using pneumatic propulsion which determines both forces

and power for three different spherical diameters. These cover laminar, transitional,

and fully turbulent flow. Using the resulting findings, non-dimensional relations are

derived which govern forces and power depending on Reynolds number and a dimesionless

spherical rotation frequency. Not only are the differences between laminar and turbulent

flow made apparent, the need for further simulations with this geometry is eliminated as

the resulting relations can be applied to arbitrary scales. Furthermore, it is shown that

this type of analysis can be used both to compare different propulsion media and varying

geometric layouts.

Knowledge of grinding force and power is extremely important when machining work-

pieces as it ensures that the rotation frequency and the cutting speed can be adapted
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to particular materials, thereby ensuring accurate manufacturing of high quality cavit-

ies with smooth surfaces. The analyses conducted within this thesis pave the way for

the development of a novel and revolutionary new grinding tool and demonstrate how

fluid-to-solid force transfer can be modelled across a multitude of scales.
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Chapter 2

Governing equations

The following section derives the equations which govern the flow of Newtonian com-

pressible fluids and gives an overview of the concepts behind their derivations. Their

incompressible equivalents are stated and specific models such as the perfect gas law and

Sutherland’s viscosity model are introduced.

2.1 Conservation of mass

Let ψ denote an arbitrary intensive property defined over a material control volume V .

The Reynolds transport theorem1 states that the rate of change of ψ within V must be

equal to the sum of the flux of ψ over the volume boundaries δV and sources or sinks Q

within V :
d

dt

ˆ

V

ψ dV = −
ˆ

δV

ψu · n dA+
ˆ

V

Q dV. (2.1)

Using the divergence theorem1, the surface integral becomes a volume integral:

d

dt

ˆ

V

ψ dV = −
ˆ

V

∇ · (ψu) dV +

ˆ

V

Q dV. (2.2)

Also the LHS can be written as

d

dt

ˆ

V

ψ dV =

ˆ

V

∂ψ

∂t
dV (2.3)

using Leibniz’s integral rule1. Now the volume integrals may be combined into one single

integral: ˆ

V

∂ψ

∂t
+∇ · (ψu)−QdV = 0. (2.4)

1See Appendix A
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CHAPTER 2. GOVERNING EQUATIONS

Since this must hold for an arbitrary volume V , the integrand itself must equal zero.

Hence,
∂ψ

∂t
+∇ · (ψu)−Q = 0. (2.5)

This generic equation of continuity (eqn (2.5)) may be used to derive various conservation

laws. The most basic such law is obtained by substituting the mass density ρ for ψ and

assuming Q = 0, i.e. mass is neither created nor destroyed:

∂ρ

∂t
+∇ · (ρu) = 0. (2.6)

This is known as the mass continuity equation, often also simply referred to as the con-

tinuity equation (cp. [Whi05]).

2.2 Conservation of momentum

In a similar yet somewhat less straight forward way, ρu may be substituted into eqn (2.5)

to derive a relation for the rate of change of momentum. Note that Q is replaced by f , a

vector representing sources and sinks of momentum, i.e. forces per unit volume:

∂ (ρu)

∂t
+∇ · (ρu⊗ u)− f = 0. (2.7)

Expanding the derivatives once yields

∂ρ

∂t
u+ ρ

∂u

∂t
+∇ (ρu) · u+ ρu∇ · u = f , (2.8)

which can be further decomposed into

∂ρ

∂t
u+ ρ

∂u

∂t
+∇ (ρ)u · u+ ρ∇ (u) · u+ ρu∇ · u = f . (2.9)

The following rearrangement highlights common factors ρ and u:

u
∂ρ

∂t
+ ρ

∂u

∂t
+ uu · ∇ρ+ ρu · ∇u + ρu∇ · u = f , (2.10)

which may be collected thusly:

ρ

(
∂u

∂t
+ u · ∇u

)
+ u

(
∂ρ

∂t
+ u · ∇ρ+ ρ∇ · u

)
= f . (2.11)

At this point it is worth noting that the expression inside the second parenthesis on

the LHS of eqn (2.11) is equal to the LHS of eqn (2.6), which is equal to zero. Hence,

conservation of momentum is given by

ρ
∂u

∂t
+ ρu · ∇u = f . (2.12)
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2.2. CONSERVATION OF MOMENTUM

f is typically further divided into surface forces and body forces. Body forces are those

which apply to the entire mass of the control volume. Such forces are usually gravitational

or electromagnetic in nature. Here only gravity is considered, and thus

f = fbody + f surface = ρg + f surface, (2.13)

where g is the vector acceleration of gravity.

Surface forces describe forces applied by external stresses on the sides of the volume

element. These stresses consist of 9 components and are described by the tensor

σ =

⎛
⎝ σxx σxy σxz

σyx σyy σyz

σzx σzy σzz

⎞
⎠ . (2.14)

σ is a symmetric tensor, i.e. σij = σji. Symmetry is required to satisfy equilibrium of

moments about the three axes of the volume element and will be discussed in section 2.4.

Note that the entries in the ith row of σ correspond to the forces acting on the surface

facing in the direction of i. Entries in the jth column correspond to forces that act in the

direction of j. Figure 2.1 shows individual components σij acting on a control volume.

Hence, the total force in each direction exerted by stress is given by

dFx = σxxdydz + σyxdxdz + σzxdxdy

dFy = σxydydz + σyydxdz + σzydxdy

dFz = σxzdydz + σyzdxdz + σzzdxdy.

In equilibrium, these forces would be balanced by equal and opposite forces on the back

faces of the volume. However, if the element were to accelerate, stresses on the front and

back would differ by differential amounts. In the direction of x, for example,

σxx,front = σxx,back +
∂σxx

∂x
dx, (2.15)

resulting in a net force on the volume element in the direction of x:

dFx,net =

(
∂σxx

∂x
dx

)
dydz +

(
∂σyx

∂y
dy

)
dxdz +

(
∂σzx

∂z
dz

)
dxdy. (2.16)

Or, dividing by V = dxdydz and taking into account the symmetry of σ:

fx =
∂σxx

∂x
+
∂σxy

∂y
+
∂σxz

∂z
, (2.17)

which is equivalent to taking the divergence of the vector composed of the top row of the

stress tensor. Similarly, f2 and f3 are the divergences of the second and third row of σ

respectively. Thus, the total vector surface force is

f surface = ∇ · σ =
∂σij

∂xj

, (2.18)
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CHAPTER 2. GOVERNING EQUATIONS

Figure 2.1: Stresses σij acting on a control volume

where ∇·σ is to be interpreted in the tensor sense, resulting in a vector. Eqn (2.12) now

becomes

ρ
∂u

∂t
+ ρu · ∇u = ∇ · σ + ρg (2.19)

and it remains to express σ in terms of the velocity u. In order to do this, the type of

fluid must be taken into consideration. Here, only Newtonian fluids are examined, i.e.

fluids in which stress is considered a linear function of rate of strain.

2.3 Motion and deformation of a fluid element

In fluid mechanics it is important to be able to describe and quantify motion, deformation,

and rate of deformation of fluid elements. Four different types of motion and deformation

typically exist: translation, rotation, extensional strain (dilatation), and shear strain. A

2D example of these four types can be seen in Figure 2.2. Point B is subject to translation

as it has moved to the new position B′. The diagonal BD represented by the dashed line

has been slightly rotated counter-clockwise to B′D′. Dilatation can be seen in that the

element has gained in size. Finally, the element has been subjected to shear strain as it

is no longer square but now possesses a rhombic shape.

Now for a more analytical approach. Translation is defined using the displacements of

the point B, namely udt and vdt. Hence, the rate of translation is simply u and v.

The rotation of BD is given by dΩz = θ+dα− π
4
. Noting the fact that 2θ+dα+dβ = π

2
,
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2.3. MOTION AND DEFORMATION OF A FLUID ELEMENT

Figure 2.2: Distortion of a moving fluid element (as seen in [Whi05])

θ may be eliminated from the previous expression, leaving

dΩz =
1

2
(dα− dβ) . (2.20)

Both dα and dβ are linked to derivatives of velocity by

dα = lim
dt→0

⎛
⎜⎝tan−1

∂v

∂x
dx

dx+
∂u

∂x
dxdt

⎞
⎟⎠ dt =

∂v

∂x
dt

dβ = lim
dt→0

⎛
⎜⎜⎝tan−1

∂u

∂y
dy

dy +
∂v

∂y
dydt

⎞
⎟⎟⎠ dt =

∂u

∂y
dt,

(2.21)

which is valid for small angles. Eqn (2.21) may be substituted into (2.20) to yield the

rate of rotation (also referred to as the angular velocity) about the z-axis:

dΩz

dt
=
1

2

(
∂v

∂x
− ∂u

∂y

)
. (2.22)

Similarly, now for a 3D flow, the rates of rotation about the x and y axis are

dΩx

dt
=
1

2

(
∂w

∂y
− ∂v

∂z

)
dΩy

dt
=
1

2

(
∂u

∂z
− ∂w

∂x

)
. (2.23)
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Since there is a factor 1
2
in each of these 3 terms, the vorticity ω usually takes preference

over dΩ
dt
, as it is equal to twice the angular velocity:

ω = 2
dΩ

dt
(2.24)

Closer inspection of eqn (2.22) to eqn (2.24) shows their relation through vector calculus:

ω = ∇× u (2.25)

Hence, the vorticity is identically divergence free (or solenoidal):

∇ · ω = ∇ · (∇× u) = 0 (2.26)

On a side note, a flow with ω = 0 is referred to as irrotational flow.

Shear strain can be thought of as the average decrease of the angle between two lines

which are initially perpendicular to each other. Considering the lines AB and BC in

Figure 2.2 as initial lines, the shear strain increment is 1
2
(dα + dβ). Thus, making use of

eqn (2.21), the shear strain rate is

εxy =
1

2

(
dα

dt
+
dβ

dt

)
=
1

2

(
∂v

∂x
+
∂u

∂y

)
(2.27)

Similarly,

εyz =
1

2

(
∂w

∂y
+
∂v

∂z

)
εzx =

1

2

(
∂u

∂z
+
∂w

∂x

)
(2.28)

Note that shear strain rates are symmetric, i.e. εij = εji.

Finally, it remains to analytically define extensional strain (dilatation). Once again ex-

amining Figure 2.2, the extensional strain in direction of x is defined as the fractional

increase in length of the horizontal side of the fluid element, given by

εxxdt =

(
dx+

∂u

∂x
dxdt

)
− dx

dx
=
∂u

∂x
dt (2.29)

with similar expressions for εyydt and εzzdt. Hence, the three dilatation strain rates are

given by

εxx =
∂u

∂x
εyy =

∂v

∂y
εzz =

∂w

∂z
. (2.30)

These rates of strain form a second-order symmetric tensor

ε =

⎛
⎝ εxx εxy εxz

εyx εyy εyz
εzx εzy εzz

⎞
⎠ , (2.31)

which will be shown to play a vital role in the derivation of the equation of motion.
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2.4. DEFORMATION LAW FOR A NEWTONIAN FLUID

2.4 Deformation law for a Newtonian fluid

In 1845, Sir George Gabriel Stokes postulated three assumptions which are valid for gases

and most common fluids:

1. The fluid is continuous and its stress tensor σij is at most a linear function of rates

of strain (σij = f
(
ε
)
).

2. The fluid is isotropic, i.e. its properties are independent of direction and therefore

the deformation law is independent of the coordinate axes in which it is expressed.

3. When the strain rates are zero, the deformation law must reduce to the hydrostatic

pressure condition σij = −pδij .
The previous section shows that the tensor ε is in fact symmetric, i.e. εij = εji. A

property of symmetric tensors is that there exists one and only one set of axes for which

the off-diagonal terms are zero. These are designated the principal axes, for which the

strain rate tensor becomes

ε′ =

⎛
⎝ ε′xx 0 0

0 ε′yy 0

0 0 ε′zz

⎞
⎠ . (2.32)

Condition 2 requires the principal strain axes be identical to the principal stress axes,

which makes this a good basis from which to derive the deformation law. Let x̂′, ŷ′, and ẑ′

be the principal axes for which shear strain rates and shear stresses, i.e. the off-diagonal

elements, are zero. Using these axes the deformation law can include at most three linear

coefficients, for example

σ′

xx = −p+ C1ε
′

xx + C2ε
′

yy + C3ε
′

zz. (2.33)

Note that −p is added to satisfy condition 3. The condition of isotropy (condition 2)
requires that C2 = C3, reducing the number of independent linear coefficients from three

to two. Hence,

σ′

xx = −p+Kε′xx + C2
(
ε′xx + ε′yy + ε′zz

)
= −p +Kε′xx + C2∇ · u, (2.34)

where K = C1 − C2, and the expression inside parentheses is the divergence of velocity.

Eqn (2.34) may now be transformed to some arbitrary set of axes x̂, ŷ, ẑ in which shear

stresses are not equal to zero. Using directional cosines

α1 ≡ x̂′ · x̂ β1 ≡ ŷ′ · x̂ γ1 ≡ ẑ′ · x̂
α2 ≡ x̂′ · ŷ β2 ≡ ŷ′ · ŷ γ2 ≡ ẑ′ · ŷ
α3 ≡ x̂′ · ẑ β3 ≡ ŷ′ · ẑ γ3 ≡ ẑ′ · ẑ
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coordinates may be transformed from the arbitrary coordinate system to the principal

coordinate system:

x̂′ = α1x̂+ α2ŷ + α3ẑ

ŷ′ = β1x̂ + β2ŷ + β3ẑ

ẑ′ = γ1x̂+ γ2ŷ + γ3ẑ

and vice-versa:

x̂ = α1x̂
′ + β1ŷ

′ + γ1ẑ
′

ŷ = α2x̂
′ + β2ŷ

′ + γ2ẑ
′

ẑ = α3x̂
′ + β3ŷ

′ + γ3ẑ
′.

By orthogonality of the coordinate system, it must hold that

x̂ · x̂ = ŷ · ŷ = ẑ · ẑ = 1

x̂ · ŷ = ŷ · ẑ = ẑ · x̂ = 0,

giving the identity

αlαm + βlβm + γlγm = δlm,

where δlm is the Kronecker delta. These definitions allow the following transformation

rule for normal strain rates and stresses between the principal axes and the new arbitrary

system:

εxx = ε′xxα
2
1 + ε′yyβ

2
1 + ε′zzγ

2
1 (2.35)

σxx = σ′

xxα
2
1 + σ′

yyβ
2
1 + σ′

zzγ
2
1 (2.36)

Similarly, shear strain and stress can be expressed in terms of principal strain rates and

stresses:

εxy = ε′xxα1α2 + ε′yyβ1β2 + ε′zzγ1γ2 (2.37)

σxy = σ′

xxα1α2 + σ′

yyβ1β2 + σ′

zzγ1γ2 (2.38)

Now to eliminate σ′

xx, σ
′

yy , and σ′

zz from eqn (2.36) by using eqn (2.34) in conjunction

with eqn (2.35) and the fact that α21 + β21 + γ21 = 1:

σxx = −p+Kεxx + C2∇ · u. (2.39)

Similar expressions can be obtained for σyy and σzz. Also, σ′

xx, σ
′

yy, and σ′

zz may be

eliminated from eqn (2.38), resulting in

σxy = Kεxy (2.40)

with analogous expressions for σyz and σxz. Note how the symmetry of εij translates

to σij . For Newtonian fluids, K is typically equal to 2μ, twice the ordinary coefficient
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2.5. MECHANICAL AND THERMODYNAMIC PRESSURE

of viscosity (usually called the dynamic viscosity, or simply the viscosity), and C2, the

second coefficient of viscosity, is usually referred to as the coefficient of bulk viscosity λ,

as it is associated with volume expansion (∇ · u). Combining eqn (2.39) and eqn (2.40)
yields a general deformation law for Newtonian viscous fluids:

σij = −pδij + μ

(
∂ui

∂xj

+
∂uj

∂xi

)
+ λ∇ · uδij, (2.41)

where the rates of strain εij are now presented in terms of velocity gradients.

2.5 Mechanical and thermodynamic pressure

A direct consequence of eqn (2.41) was pointed out by Stokes in that he defined the

mechanical pressure pM as the average compression stress exerted on a control volume

equal to −1
3
tr

(
σ
)
, which may also be expressed using (2.41). Hence,

pM = −1
3
(σxx + σyy + σzz) = p−

(
2

3
μ+ λ

)
∇ · u. (2.42)

This means that the average pressure in a viscous fluid under stress is not the same as the

thermodynamic property called pressure. pM also takes volume expansion into account,

which exerts a force opposite to p. Stokes circumvented this problem in 1845 by assuming

μ = −2
3
λ (2.43)

which is known as Stokes’ hypothesis. Also, in incompressible fluids this problem vanishes

as constant density implies ∇ · u = 0. This is discussed later in Section 2.10.
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