
Chapter 1

Introduction

Since the invention of the universal programmable computer in the 1940s, solid state physics
has contributed tremendously to the development of computer hardware. Nevertheless, a
quite unphysical separation has occurred: It was soon realized in practical computer engi-
neering that electric and magnetic phenomena, which are known to depend on each other
and are described in a combined theory, each have their own advantages and disadvantages.
Electricity, on the one hand, is fast, but volatile. Magnetism, on the other hand, that arises in
condensed matter as a macroscopic quantum effect, is slower, but persistent. Consequently,
electric charges and capacitors are used nowadays for information processing and tempo-
rary data storage, while magnetism is used almost exclusively in reliable long-term storage
devices.
The field of spintronics [1–3], which emerged some years ago, attempts to recombine

electricity and magnetism, which both originate from electrons: While the former is a result
of the electron charge, the latter is mostly a consequence of the electron spin. It should
therefore be possible to exploit the electron spin as a carrier of information in addition to
its charge. Fundamental and continuously investigated topics in the field of spintronics are
the injection, transport, manipulation, storage, and detection of spin-polarized carriers [3–5].
The vision is to devise a new electronics, with new devices for information processing and
data storage.
Metal-based spintronics devices already play an important role in our everyday life. The

2007 Nobel Prize in Physics was awarded to A. Fert and P. Grünberg for the discovery of
the giant magnetoresistance effect, which is used in read heads of hard discs. Another de-
vice belonging to this field is the magnetoresistive random access memory (MRAM), which
is based on the tunnel magnetoresistance (TMR) effect and already commercially available.
In a MRAM module, the capacitive storage used in conventional dynamic random access
memory (DRAM) is replaced by a form of magnetic storage that employs magnetic tunnel
junctions (MTJs). A considerable advantage of MRAM is the persistence of the stored infor-
mation, even if the energy supply of the device is removed. This is clearly not the case in
DRAM modules, since they constantly need energy for refreshing the stored information [6].
Consequently, MRAM is more energy efficient. Moreover, it is cost effective to integrate, has
an unlimited endurance, and provides fast (≈ 5 ns) random access [6, 7]. Another suggested
concept aims at overcoming the rigidity of the present hardware by creating logic devices,
based on MTJs, that are reprogrammable at run-time (so-called “chameleon” processors [8]).
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1 Introduction

Semiconductor spintronics, on the other hand, offers a possible direction towards devices
that perform logic, communication, and storage within the same materials technology [9].
A drawback of metal-based spintronics is that metals have no band gap; therefore, the car-
rier density cannot be as precisely controlled as in semiconductors (by doping, electrostatic
gating, or band gap engineering). Moreover, the room-temperature spin relaxation times
in nonmagnetic semiconductors are three orders of magnitude longer than in nonmagnetic
metals [9]. Semiconductor spintronics devices compare favorably in speed and efficiency to
electronic devices [10]. They could further reduce the power consumption by staying out
of equilibrium for a long time (of the order of the spin relaxation time) instead of under-
going frequent equilibration (energy dissipation) [9]. Magnetic transistors could combine
nonvolatility and reprogrammability with amplification [9]. Moreover, this technology could
open a door towards quantum computation [9].
An interesting subtopic of semiconductor spintronics is Si spintronics [5], not least for

technological and economical reasons: Si is an abundant material, the de-facto standard
semiconductor, and our industry and technology is highly optimized for Si processing. In
addition, the Si crystal structure has inversion symmetry, and its isotopes 28Si (92%) and
30Si (3%) have no nuclear spin [5]. Consequently, the spin relaxation in Si is dominated by
the Elliott-Yafet mechanism (in contrast to the D’yakonov-Perel’ mechanism, which plays
an important role in III-V semiconductors like GaAs [11]), a combined action of momen-
tum scattering, e.g., by phonons or impurities, and spin-orbit interaction, which is small in
Si [5]. From an analysis of the Elliott and Yafet processes it has been shown recently that
the phonon-induced spin relaxation time τ of the conduction electrons in bulk Si behaves as
τ ∼ T−3, reaching large values of 1 μs for T = 60 K and around 10 ns for T = 300 K [12].
Conventional doping reduces the spin relaxation time due to a more frequent impurity scat-
tering [5]. Room-temperature spin injection, spin manipulation, and spin detection in Si has
been demonstrated recently [13] as well as the nonlocal detection of a spin accumulation [14].
Rational materials design for future spintronics devices requires a thorough, detailed un-

derstanding of materials properties and their interdependence in various fields; for instance,
(i) the dependence of structural properties on the growth protocol, (ii) the interplay of
structural, electronic, and magnetic properties, (iii) the interactions between the different
constituents of the material, e.g., between a semiconductor host and magnetic impurities
embedded therein, and (iv) the dependence of transport and spincaloric properties on the
electronic and magnetic structure. Modern experimental methods allow for an investigation
of these points on the atomic scale. Therefore, contact can be made to state-of-the-art com-
putational physics, which provides detailed insight on the same length scale. This enables
one to analyze systems on a fundamental, quantum-mechanical, ab initio level, far beyond
phenomenological approaches.
In this spirit, the present thesis addresses several topics related to magnetism on the atomic

scale in the fields of semiconductor and metal-based spintronics, such as ferromagnetic thin
films, dilute magnetic semiconductors (DMS), or MTJs with half-metallic electrodes. As a
common theme of all topics, the semiconductor Si is combined in different ways with the
abundant and “magnetic” 3d transition metals (TMs).
The present thesis is organized as follows: After this introduction (Chapter 1), the em-

ployed numerical methods are presented (Chapter 2), e.g., spin-polarized density functional
theory (DFT) within the plane wave framework, ultrasoft pseudopotentials, semilocal and
hybrid exchange-correlation functionals, on-site electronic correlation, the simulation of spin-
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polarized scanning tunneling microscopy (SP STM) images from the DFT electronic structure
in the spirit of the Tersoff-Hamann approximation, and ballistic quantum transport in the
Landauer-Büttiker formalism. Other methods like ab initio thermodynamics, Monte Carlo
simulations, or the Sivan-Imry approach to spincaloric properties are described later in this
thesis. Subsequently, the results are discussed in three different chapters. Each of these
chapters begins with a more profound introduction, which provides an integration of the
results into the current state of research.
One possible route to fabricate a spin injector (or a spin detector) is by growing a ferro-

magnetic thin film of TMs on a semiconductor substrate (e.g., Si). The high reactivity of
the Si surfaces leads to the immediate formation of TM silicides. Chapter 3 treats several
topics concerning different 3d TM silicides as bulk material and as film structure of different
thickness grown epitaxially on the Si(111) surface. Structural, electronic, and magnetic prop-
erties of bulk 3d TM monosilicides, which largely crystallize in the complex B20 structure,
are presented. In particular, the band gap, which is known to exist for FeSi, is shown to be
a universal property of this class of materials. It is linked to the B20 crystal structure and
separates two opposing groups of bands with different predominant TM 3d orbital charac-
ter. MnSi and FeSi are also studied in the rock-salt and zinc-blende crystal structures. The
validity of the present theoretical description of these materials, which exhibit nontrivial
electronic correlations, and the applicability of ab initio thermodynamics is assessed.
Calculations for bulk 3d TM silicides under biaxial strain provide materials properties in

the limit of thick (e.g., several hundred monolayers) epitaxial films on Si(111). For MnSi, a
strain-induced volume expansion, increased magnetic moments and Curie temperature, and
a phonon softening are found. FeSi makes a surprising transition from a nonmagnetic semi-
conductor to an almost half-metallic ferromagnet if matched epitaxially to Si(111), which
means that it displays a finite density of states at the Fermi energy only in one spin channel.
These findings make MnSi and FeSi especially interesting. On the other hand, it is explicitly
demonstrated for MnSi/Si(111) heterostructures that the magnetic behavior of thin (e.g., just
a few monolayers) 3d TM silicide films can deviate significantly from that of thicker films
due to quantum confinement and/or interface/surface effects.
Subsequently, the growth mode, the atomic, and the magnetic structure of epitaxial MnSi

thin films on Si(111) are analyzed in more detail. Interface properties are presented for
MnSi/Si(111) and FeSi/Si(111). The atomic structure of the recently observed

√
3×√

3 and
3×3 surface reconstructions of MnSi films is revealed by combining experimental atomic-
resolution STM imaging and first-principles simulations. A comparison of results for films
grown by different techniques provides evidence that their internal stacking depends on the
growth protocol. Since the magnetic properties of MnSi films are closely related to their
atomic structure, the occurrence of different stacking sequences implies that strict control
of the growth conditions is required to reproducibly fabricate MnSi films with specified
properties. Finally, it is shown that the competing formation of Mn5Si3 can be excluded in
the present experiments.
A second route towards new materials for spintronics is the doping of semiconductors

or insulators with magnetic impurities. The systematic, reliable investigation of these DMS
systems is a highly problematic and nontrivial task due to the many possible pitfalls. An
example shall be given: Since high doping concentrations (∼ 1%) of magnetic impurities are
necessary, DMS samples can suffer from clustering and segregation of the impurities. This
makes it hard (or impossible) for conventional experimental methods to isolate the different
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types of magnetic interactions present in the sample (e.g., impurity-host interactions of iso-
lated impurities vs. impurity-impurity interactions of impurity pairs or clusters; moreover,
signals from segregated bulk phases of the impurity material). First-principles simulations,
on the other hand, can suffer from the band gap problem or a deficient energy level or-
dering. Chapter 4 introduces a new strategy to study experimentally the unbiased, bulklike
impurity-host and impurity-impurity interactions of magnetic impurities in semiconductors
and insulators on the atomic scale by using surface methods like SP STM in conjunction with
passivated host surfaces. This strategy can lead to new insights on a fundamental, atomic
level in the field of DMS.
The proof of principle is given by large-scale ab initio computer simulations for 3d TM

impurities in Si, but the suggested approach is generalizable to other DMS systems like
Co-doped ZnO. Different structural, electronic, and magnetic properties of interstitial and
substitutional Cr, Mn, and Fe impurities in bulk Si and below the H/Si(111) surface are
explained. Kinetic considerations concerning the injection and migration of subsurface im-
purities are made. It is demonstrated how SP STM in conjunction with passivated host
surfaces can be used to image and measure the extension of impurity wave functions, the
anisotropic spin polarization induced in the host electronic structure, and, quantitatively, the
exchange coupling constants between neighboring impurities. This provides, for instance, a
visual explanation why a ferromagnetic coupling is more difficult to achieve in Si than in
GaAs. It is shown that semilocal and state-of-the-art hybrid exchange-correlation functionals
lead to similar electronic and magnetic structures, with the exception of the substitutional Fe
impurity. It is demonstrated how the latter can be used as a benchmark for the applicability
of hybrid functionals in DMS simulations.
The new technique can also be applied to impurity δ layers and two-dimensional impurity

clusters, which are studied afterwards. In particular, it is found that (111) δ layers of intersti-
tial Cr impurities in Si exhibit a strong ferromagnetic interaction and are half-metallic. More
generally, Cr-doped Si seems to be an interesting candidate material for a DMS. Moreover,
it is shown how a ferromagnetic semiconductor could be constructed from two-dimensional
Fe clusters embedded in Si.
The last part of the chapter is devoted to the experimentally motivated question whether

or not it is possible to generate subsurface Fe impurities by deposition of organic molecules
(e.g., iron phthalocyanine, FePc) on the H/Si(111) surface. It is concluded that the implanta-
tion is possible, but the necessary steps in the reaction are quite improbable due to the high
binding energy of Fe in FePc. Gas phase calculations of phthalocyanine molecules with dif-
ferent TM centers employing different exchange-correlation functionals underline that these
high binding energies are reasonable. It is shown that van-der-Waals corrections to semilo-
cal DFT are very important for the correct description of the FePc adsorption on H/Si(111).
Besides, silicon phthalocyanine is found to be an interesting example of d0 magnetism in
molecules.
Magnetic materials containing Si can be synthesized in many ways. Instead of diluting

Si with TMs, one can also add Si to an alloy of TMs. An example is the Heusler alloy
Co2MnSi, which is a half-metallic ferromagnet. Chapter 5 focuses on electronic transport
and spincaloric properties of epitaxial MTJs with half-metallic Co2MnSi Heusler electrodes
and MgO tunneling barriers. Such heterostructures can be employed in a suggested “thermo-
MRAM” module, which uses the magneto-Seebeck effect to read out the magnetic state of a
MTJ without an applied voltage or a flowing charge current. Moreover, a Co2MnSi/MgO/se-
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miconductor setup in conjunction with an applied voltage or a temperature gradient can be
used as spin injector that avoids the conductivity mismatch problem.
Given that the Co2MnSi electrodes are ferromagnetic half-metals, the relative magneti-

zation of the two electrodes has striking consequences for the transport properties of the
MTJ. For the case of parallel electrode magnetization, electronic transport, spincaloric prop-
erties, and the dependence of both on the interface atomic structure are analyzed. In addi-
tion to conventionally obtained, approximate Seebeck coefficients, a more general route to
spincaloric properties is presented that directly provides the response of the system (current
or voltage) to arbitrary thermal gradients. It is demonstrated that the conventional Seebeck
coefficient can be understood as first-order Taylor expansion coefficient of the voltage re-
sponse. Thermal variations of the chemical potential in the leads and finite-bias effects can
be readily included in this method. It is shown that a targeted growth control of the MTJs
can be used to tailor their spincaloric properties (e.g., magnitude and sign of the thermally
induced voltage).
In contrast, an antiparallel magnetization of the half-metallic electrodes should ideally

prevent any electronic transport. Nevertheless, a parasitic current flows in room-temperature
experiments that reduces the TMR ratio. It is shown by using a statistical approach to the
electron-phonon interaction involving randomly distorted structures that the excitation of
phonons has no relevant effect on the electronic structure of Co2MnSi at room temperature
and therefore cannot account for the strong decrease of the TMR ratio. On the other hand, it
is argued that inelastic tunneling involving thermally activated interface magnons is among
the most probable explanations for the observed behavior. First-principles calculations reveal
that such interface magnons are much more easy to excite than bulk magnons.
Finally, Chapter 6 summarizes the contents of this thesis and provides perspectives for

future investigations.
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2 Methodology

2.1 The electronic structure

Almost every result that will be presented in this thesis is based on the electronic structure
of a certain physical system. This system can be an infinitely extended solid, an isolated
impurity in a host material, a molecule, or just a single atom. All relevant physical properties
of this system are determined, or significantly influenced, by its electronic structure: The
quantum-mechanical many-particle behavior of electrons in the potential of the nuclei.

2.1.1 The many-particle problem in quantum mechanics

On the atomic scale, condensed matter physics is governed by the Schrödinger equation,

ih̄
∂

∂t
|ψt〉 = Ĥ |ψt〉 , (2.1)

where Ĥ is the Hamilton operator (“Hamiltonian”) of the system under consideration and
the vector |ψt〉 denotes the quantum-mechanical state the system is in at time t. Solving
Eq. (2.1) is equivalent to finding the stationary solutions and their energies, that is, eigen-
states (or, similarly, eigenvectors) |ψi〉 and eigenenergies Ei of Ĥ,

Ĥ |ψi〉= Ei |ψi〉 ,
since the time evolution of the quantum system can be expressed (for time-independent
Hamiltonians) by decomposing an arbitrary initial state |ψ0〉 into the eigenbasis of Ĥ:

|ψt〉 =∑
j

exp
{
− i
h̄
Ej t

}〈
ψj|ψ0

〉∣∣∣ψj〉 .
While a molecule consists of only few atoms, solids usually contain about 1023 atoms per

cm3. Each atom consists of a nucleus and several electrons. The full Hamiltonian of such a
system, neglecting relativistic effects, external magnetic fields, and quantum electrodynam-
ics, reads:

Ĥ = T̂n + T̂e + V̂n-n + V̂e-e + V̂e-n ,

with kinetic energy operators (in position representation) for nuclei (n) and electrons (e),

T̂n =
Nn

∑
I

P̂2I
2MI

= −
Nn

∑
I

h̄2

2MI
∇2

�RI
,

T̂e =
Ne

∑
i

p̂2i
2m

=−
Ne

∑
i

h̄2

2m
∇2
�ri
,

and Coulomb interaction potential operators,

V̂n-n = +
1
2

Nn

∑
I �=J

e2

4πε0

ZIZJ

|�RI − �RJ |
,

V̂e-e = +
1
2

Ne

∑
i �=j

e2

4πε0

1
|�ri −�rj|

,

V̂e-n = −
Ne,Nn

∑
i,I

e2

4πε0

ZI

|�ri − �RI |
,
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2.1 The electronic structure

where the factor 1/2 eliminates double counting. Relativistic effects (like mass modifications
or the electron spin) can be included later. The full many-particle wave functions Φi depend
on the coordinates of all electrons and nuclei and are solutions of

Ĥ Φi(�r1, . . . ,�rNe ; �R1, . . . ,�RNn) = Ei Φi(�r1, . . . ,�rNe ; �R1, . . . ,�RNn ). (2.2)

It is needless to say that, in general, such a system can be solved neither algebraically nor
numerically. Even simple many-particle systems like a He atom or the H2 molecule cannot be
described exactly (although very good approximate results can be achieved here). Therefore,
several well-chosen approximations are necessary that will be discussed in this chapter.

2.1.2 The adiabatic approximation

First of all, the motion of the nuclei can be decoupled from the motion of the electrons due
to their highly different masses (m/M ≈ 10−3). This procedure is known as the “adiabatic
approximation” (or Born-Oppenheimer approximation [20]). Generally, any many-particle
wave function Φ can be decomposed according to

Φ({�ri, �RI}) =∑
ν

Ψν({�ri} : {�RI}) Ξν({�RI}), (2.3)

with electronic wave functions Ψν({�ri} : {�RI}) and nucleonic wave functions Ξν({�RI}). Con-
sidering m/M as a small quantity, the kinetic energy of the nuclei T̂n can be regarded as a
perturbation to the electronic part of the Hamiltonian Ĥe:

Ĥ = Ĥe + T̂n , Ĥe = T̂e + V̂n-n + V̂e-e + V̂e-n .

Note that Ĥe contains no differential operators with respect to the nucleonic positions �RI .
Inserting the wave function Φ({�ri, �RI}) as given in Eq. (2.3) into Eq. (2.2) and using the
electronic part of the equation,

Ĥe Ψν({�ri} : {�RI}) = εν({�RI}) Ψν({�ri} : {�RI}), (2.4)

leads, after multiplication with Ψ∗
ν′ ({�ri}) and integration over the electron coordinates�ri, to

the still exact expression

(T̂n + εν({�RI})) Ξν({�RI}) +∑
ν′
Aν,ν′ Ξν′ ({�RI}) = E Ξν({�RI}).

The adiabatic approximation [21, 22] corresponding to the limit m/M → 0 consists of ne-
glecting the transition matrix elements Aν,ν′ (which contain the electronic wave functions).
It leads to a complete separation of electronic and nucleonic dynamics. The equation for the
nucleonic wave functions then reads:

(T̂n + εν({�RI})) Ξν({�RI}) = E Ξν({�RI}). (2.5)

Thus, the problem is separated into two Schrödinger-like equations (2.4) and (2.5). The
electronic equation (2.4) depends only parametrically on the positions of the nuclei. Hence,
one can study the interacting electrons in a fixed, “external” potential generated by the
nuclei. The central idea behind the adiabatic approximation is that the electron system
responds instantaneously to changes of the nucleonic positions due to the mass difference,1

1Typical time scales for the electrons (nuclei) are femtoseconds (picoseconds).
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2 Methodology

and that there are no excitations of the electronic system (transitions ν→ ν′) due to nucleonic
dynamics, so that the electrons remain in their (ground) state [22].
In most cases, speaking of “nucleonic wave functions” is exaggerated, since normally no

Schrödinger-like equation, e.g., Eq. (2.5), is solved for the nuclei. Instead, they move on
trajectories following classical dynamics, acted upon by forces calculated from the quantum-
mechanical electron system (e.g., Hellmann-Feynman forces [23], which are used in this
thesis for optimizations, i.e., relaxations, of the different atomic structures). For heavy atoms,
this approximation is very good. Although nothing else than this is done in this thesis, it
should be mentioned here that there exist other approaches, especially in modern research.
For instance, ab initio path-integral molecular dynamics can be done, in which both the
electrons and the nuclei are treated as quantum particles [24, 25].

2.1.3 Bloch’s theorem

The complexity of a quantum many-particle problem is a consequence of the Coulomb in-
teraction between the particles. However, even if the particles are assumed to be “noninter-
acting” (despite, e.g., some effective, mean-field-like interaction or the inclusion of the Pauli
exclusion principle for electrons) and only the electronic parts of the wave functions are con-
sidered (for fixed nuclei), the question arises how a solid bulk system of 1023 atoms can be
described efficiently. The key observation is that the potential generated by the nuclei is in-
variant under certain translations in a bulk crystal. Therefore, the whole (ideal and infinite)
crystal can be constructed from a single unit cell by using translational operations. Bloch’s
theorem, which is well known in mathematics as Floquet’s theorem, states that eigenfunc-
tions of the electronic Hamiltonian Ĥ of the crystal can be chosen such as to possess the same
translational invariance, modulated by a phase factor.2 It is of fundamental importance in
the field of electronic structure theory of solids.
Consider a periodic lattice in three dimensions which is described by real space lattice

vectors �R = n1�a1 + n2�a2 + n3�a3. Since a translation operator T̂�R , which is defined by

T̂�R f (�r) = f (�r− �R)

for arbitrary functions f , commutes with an electronic, single-particle Hamiltonian3 in the
case of a periodic potential,

Ĥ = − h̄
2∇2

2m
+V(�r), V(�r+ �R) = V(�r) ∀�R,

the eigenstates of Ĥ can be chosen such that they are simultaneously eigenstates of all possi-
ble translation operators T̂�R. The translation operators are unitary; thus, they have complex
eigenvalues with unit norm that can consequently be written as e−i�k�R, which introduces the
real vector�k. This can equivalently be deduced from their group properties. The eigenvalue
equation,

T̂−�R ψ
n�k
(�r) = ψ

n�k
(�r+ �R) = ei

�k�R ψ
n�k
(�r),

turns out to be Bloch’s theorem already. It is common to make a Bloch-like wave function
ansatz,

ψ
n�k
(�r) = ei�k�ru

n�k
(�r) with u

n�k
(�r+ �R) = u

n�k
(�r), (2.6)

2Note that this does not mean that every wave function of the crystal has translational invariance.
3We will be using single-particle equations and wave functions later in the Kohn-Sham context, e.g., Eq. (2.10).
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since
ψ
n�k
(�r+ �R) = ei�k(�r+�R)u

n�k
(�r+ �R) = ei�k�R ei�k�ru

n�k
(�r) = ei�k�Rψ

n�k
(�r).

If we insert the Bloch-like wave function ansatz into a Schrödinger-like equation,

Ĥψ
n�k
(�r) =

[
− h̄

2∇2

2m
+V(�r)

]
ei
�k�ru

n�k
(�r) = ε

n�k
ei
�k�ru

n�k
(�r) = ε

n�k
ψ
n�k
(�r),

apply the operator in brackets and cancel the phase, we end up with the following partial
differential equation for the u

n�k
:[

h̄2

2m
(�k− i∇)2 +V(�r)

]
u
n�k
(�r) = ε

n�k
u
n�k
(�r). (2.7)

As we see,�k enters the equation as a parameter; thus, we can solve it separately for each �k
we are interested in. Since the u

n�k
have to fulfill the lattice periodicity constraint, solving

Eq. (2.7) becomes a boundary value problem on one single unit cell spanned by the vectors �ai.
Therefore, the energies ε

n�k
will be discrete. The index n labels the different solutions for a

given�k and is usually referred to as band index.
It is possible to restrict �k to the first Brillouin zone. Since the reciprocal lattice vectors

�G = m1�b1 + m2�b2 + m3�b3 fulfill (or can be defined via) ei�R�G = 1, any �k can be folded back
to the first Brillouin zone by using an appropriate �G without inducing any changes. This
means that the problem of solving the Schrödinger equation for an infinite crystal reduces
to the study of a single unit cell for different�k. As a consequence of the periodic boundary
conditions, the number of �k points in the first Brillouin zone is identical to the number of
unit cells in the crystal volume that is considered. In the limit of an infinite system, the
eigenvalues ε

n�k
become quasi-continuous functions of�k and form bands.

2.2 Density functional theory

In the previous section it was shown how large periodic crystals can be described efficiently
using Bloch’s theorem, which states that the electronic structure of the infinite solid can be
derived from calculations of single unit cells containing a small atomic basis. Single atoms
and medium-sized molecules like porphyrins or phthalocyanines are not periodic, but con-
tain a comparable number of electrons which move in an external potential given by the
fixed nuclei. Unfortunately, already these small quantum systems are far too complicated
to be solved directly. A possible alternative is the extremely successful density functional
theory (DFT), for which W. Kohn received the 1998 Nobel Prize in Chemistry. Even though
DFT was introduced nearly fifty years ago, there is still ongoing research concerning funda-
mental aspects. Its applications are extremely widespread. DFT is the quantum-theoretical
method of choice for systems that are too large to be treated by the more exact quantum-
chemical methods like configuration interaction or coupled cluster (small molecules), but
still small enough to be in range for modern high-performance computers. Nowadays, sys-
tems containing around 1000 atoms can be handled.4 Very large biomolecules or polymers

4See, for example, Refs. [26, 27]. Note that actually the number of electrons, not the number of atoms, is the decisive
factor. Thus, the feasibility of a system depends on the involved elements, the basis set (localized vs. delocalized),
whether an all-electron or a pseudopotential approach is used, the necessary quality of the Brillouin zone sampling
(metallic/insulating/isolated system), etc.
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2 Methodology

with several thousands of atoms are beyond DFT and can only be described by empirical
methods like classical molecular dynamics employing so-called force fields.
Density functional theory is closely related to the Thomas-Fermi method which was al-

ready proposed in 1927 and employs the charge density n(�r) as its basic variable. However,
it is more sophisticated in its mathematical foundation and the treatment of kinetic energy,
exchange, and correlation of the interacting particles.

2.2.1 The theorems of Hohenberg and Kohn

Density functional theory is based on two mathematical theorems published by Hohenberg
and Kohn in 1964 [28]. They can be applied to any system of N interacting particles in an
external potential Vext(�r), thus also (and especially) to interacting electrons in a potential
given by the nuclei.

1. The external potential Vext(�r) is, except for a constant shift, a unique functional of
the ground state density n0(�r) = 〈Ψ0|∑N

i=1 δ(�r −�ri)|Ψ0〉. Since the external potential
determines the Hamiltonian Ĥ completely, all properties (observables) of the system
follow from n0(�r).

2. The ground state density n0(�r) minimizes the total energy functional

E[n] = FHK[n] + Eext[n] = FHK[n] +
∫
d3r n(�r)Vext(�r), (2.8)

where FHK[n] = T[n] + Ee-e[n] is a universal functional (independent of any external
potential) as defined by Hohenberg and Kohn [28]. T[n], Ee-e[n], and Eext[n] account
for the kinetic energy, the electron-electron potential energy, and the electron-nucleus
potential energy, respectively.

The astonishingly simple proof normally assumes a system with nondegenerate ground
state, but can be extended to the degenerate case [22, 29]. The alternative, more general
foundation of DFT proposed by Levy and Lieb [30, 31] already comprises this aspect. It is
important to note here that these theorems found DFT as an exactmany-particle theory with-
out approximations, even though the coordinate space dimension is reduced from 3N to 3
for N particles in three dimensions.
In summary, the theorems of Hohenberg and Kohn imply that if we have found the global

minimum n0 of E[n] by using, for example, the variational principle, we know the exact
ground state energy E[n0] = 〈Ψ0|Ĥ|Ψ0〉 and all other properties we are interested in of the
interacting many-body system.

2.2.2 The Kohn-Sham scheme

The next step, which turned DFT into the successful technique in electronic structure theory
it is nowadays, was made by Kohn and Sham (KS) in 1965 [32]. They replaced the many-
body problem of interacting electrons and nuclei by an auxiliary single-electron system that
leads to the same ground state density n0(�r) as the real system.
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2.2 Density functional theory

The Kohn-Sham equations

The task is to minimize the energy functional (2.8). From occupied, fermionic single-particle
wave functions ψi(�r) building up a Slater determinant Ψ the density can be derived as

n(�r) =
N

∑
i=1

〈Ψ|δ(�r−�ri)|Ψ〉=
N

∑
i=1

|ψi(�r)|2.

The kinetic energy of such a system is, in Hartree units,5

T = 〈Ψ|
[
− 1
2

N

∑
i=1

∇2
i

]
|Ψ〉=

N

∑
i=1

∫
d3r ψ∗

i (�r)

[
− 1
2
∇2
]
ψi(�r) =

1
2

N

∑
i=1

∫
d3r

∣∣∣�∇ψi(�r)
∣∣∣2 ,

where in the last step integration by parts has been used, omitting the surface term. We can
also calculate a Hartree term which arises from the “classical” Coulomb interaction of an
electron density n(�r):

EH =
1
2

∫
d3r1

∫
d3r2

n(�r1) n(�r2)

|�r1 − �r2| .

The universal part of the energy functional (2.8) can now been written as

FHK[n] = T + EH[n] + Exc[n],

which defines formally the so-called exchange-correlation functional, one of the most impor-
tant components in DFT:

Exc[n] = FHK[n]− T − EH[n] = (T[n]− T) + (Ee-e[n]− EH[n]).

It contains the difference between the original kinetic energy functional and the single-
particle kinetic energy defined above, which is presumably small [29], and the nonclassical
part of the electron-electron interaction. The total energy functional now reads:

E[n] = T + EH[n] + Exc[n] + Eext[n]. (2.9)

By minimizing this functional with respect to the density n, the Kohn-Sham equations
can be derived. The constraint

∫
d3r ψ∗

i (�r)ψj(�r) = δij of orthonormal single-particle wave
functions has to be included via Lagrange multipliers ε ij:

Ω[n] = E[n]−
N

∑
i,j=1

ε ij

(∫
d3r ψ∗

i (�r)ψj(�r)− δij

)
.

The variational equation (minimization condition) leads to

0 !
=

δΩ[n]

δψ∗
i (�r)

=
δT

δψ∗
i (�r)

+

[
δEH
δn(�r)

+
δExc
δn(�r)

+
δEext
δn(�r)

]
δn(�r)

δψ∗
i (�r)

−
N

∑
j=1

ε ijψj(�r)

= − 1
2
∇2ψi(�r) + [VH +Vxc +Vext]ψi(�r)−

N

∑
j=1

ε ijψj(�r),

5Hartree units: e = h̄ = m = (4πε0)−1 = 1 vs. Rydberg units: e2/2= h̄ = 2m = 1
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2 Methodology

where the chain rule has been used. Unitary transformation of the ψi [29] leads to the well-
known form of the Kohn-Sham equations,[

− 1
2
∇2 +VKS(�r)

]
ψi(�r) = ε iψi(�r), (2.10)

where the effective Kohn-Sham potential is given by

VKS = VH +Vxc +Vext. (2.11)

These eigenvalue equations are partial differential equations of the Schrödinger type and
are much easier to handle than the original many-particle system. They describe the move-
ment of a single electron in an effective potential generated by the other electrons (through
their charge density) and the nuclei. This is the common mean-field interpretation of the
Kohn-Sham equations. In the case of periodic boundary conditions, Bloch’s theorem can be
applied, which leads to equations like Eq. (2.7).

Solving the Kohn-Sham equations: The self-consistency scheme

initial density nin

calculate effective potential VKS

solve Kohn-Sham equations 
to determine       and       i i

calculate new density      
and total energy      

nout

E[n    ]out

Converged?m
ix

 n
ew

 d
en

si
ty

n
in

output densities, wave functions, 
eigenvalues, calculate forces, ...

yes

no

Figure 2.1 – DFT-SCF flowchart for solving the
Kohn-Sham equations.

The effective Kohn-Sham potential VKS de-
pends via the Hartree potential,

VH(�r) =
δEH
δn(�r)

=
∫
d3r′ n(�r

′)
|�r−�r ′| ,

on the density n and thus on the wave func-
tions ψi, which again depend on VKS. Thus,
the Kohn-Sham equations (2.10) have to be
solved iteratively, as outlined in Fig. 2.1.
Starting from an initial density nin1 (cal-

culated, for example, from superimposed
atomic orbitals), the ψi are determined as so-
lutions of Eqs. (2.10). From these wave func-
tions a new density nout1 is derived. By us-
ing some mixing algorithm, a density nin2 is
generated from nout1 and (several) old den-
sities, and Eqs. (2.10) are solved again. This
self-consistent field (SCF) loop is repeated until
the density n (and the corresponding energy
E[n]) is converged.6

Converging the density is, in principle, a
chapter of its own. Several mixing algo-
rithms exist, like simple linear mixing,

nini+1 = βnouti + (1− β)nini ,

or the more elaborate (and in most cases faster converging) Broyden mixing, a Krylov-like
method that uses data of several preceding densities and will be employed predominantly in

6“Converged” means that the following density changes are only small; for instance, the norm of the difference of
two subsequent densities is below a chosen threshold.
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2.2 Density functional theory

this thesis. Linear mixing with β = 1 corresponds to the naive case where one only uses the
new density, a strategy that mostly fails. Other common schemes are Pulay mixing, which
works similarly to the Broyden method, and Kerker mixing.

Spin-polarized systems

For a spin-polarized system with collinear magnetic moments, the effective Kohn-Sham po-
tential can be written as

Vσ
KS(�r) = Vext(�r) +VH(�r) +V

σ
xc(�r)

= Vext(�r) +
δEH
δnσ(�r)

+
δExc
δnσ(�r)

,

where σ∈ {↑,↓}. The generalization of density and kinetic energy expressions is very simple,
since just an additional summation over the two spin states σ has to be performed. In
addition, a spin density can be defined:

m(�r) = n↑(�r)− n↓(�r).

The Hartree potential,

VH(�r) =
δEH
δnσ(�r)

=
∫
d3r′ n

↑(�r ′) + n↓(�r ′)
|�r−�r ′ | =

∫
d3r′ n(�r

′)
|�r−�r ′ | ∀σ,

is spin-independent. The extension of Eq. (2.7) to the spin-polarized, collinear case is straight-
forward: [

1
2
(�k− i∇)2 +Vσ

KS(�r)

]
uσ
n�k
(�r) = εσ

n�k
uσ
n�k
(�r). (2.12)

Here one simply has two sets of effective potentials Vσ
KS, energy eigenvalues εσ

n�k
, and wave

functions uσ
n�k
. The spin index σ in the latter two quantities is often absorbed in n or in�k by

a doubling of the bands or the�k points, respectively.

Interpretation of the Kohn-Sham eigenvalues

It is tempting to interpret the Kohn-Sham eigenvalues ε i as energy levels of the studied
system. In fact, this is actually the common procedure. However, care has to be taken.
First of all, they arise only as auxiliary quantities in the Kohn-Sham scheme, and at first
sight there is no obvious reason why any connection to physical observables should exist.
However, by using the adiabatic connection concept it is possible to show that differences of
Kohn-Sham eigenvalues can be interpreted as well-defined “zeroth-order” approximations to
excitation energies in the interacting system [33], which means that they can be compared, for
example, to results from angle-resolved photoemission spectroscopy (ARPES) experiments.
One exception that allows for a rigorous statement is the highest occupied energy eigenvalue
in a finite system, which can be shown to be equal to minus the ionization energy [22, 34],
a statement that is similar to Koopmans’ theorem in Hartree-Fock theory. Problematic are
the facts that (i) the electron-electron interaction is in general not small, which weakens the
perturbative statement above, and (ii) the exact exchange-correlation functional is not known
(see below).
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