
Chapter 1

Introduction

Just looked like a “thing”, didn’t it? People don’t question “things”.
They just say, “oo... it’s a thing.”

The Doctor, Doctor Who

In the past years we witnessed a development leading from the data-collecting
Wireless Sensor Networks (WSNs) towards the Internet of Things (IoT). This
term, which is believed to be first publicly introduced in a presentation of Kevin
Ashton in 1991 [Ash], nowadays stands for different ideas, depending on the source
of its definition. Ashton’s definition strives to connect real-world objects to the
Internet, much in the spirit of earlier term Ubiquituos Computing [Wei91]. The
“things” in his definition do not refer to embedded computing devices, but to
actual real-world objects they observe and control. Another accepted defini-
tion [HTM+14] stresses a new level of connectivity between devices, exceeding that
of existing Machine-to-Machine (M2M) communication approaches and allowing
machines and humans to exchange data. Both definitions of the term are inher-
ently related to embedded and mobile technologies and devices such as wireless
sensor nodes, smart phones, smart watches, wearables, smart TVs, home appli-
ances and a wide array of new applications and devices focusing on observation
of and interaction with the physical world. Thomas Liesner quotes in his arti-
cle “The Internet of Things – next Revolution or Smooth Transition?” [Lie] data
from Gartner, Inc. [Gar] and others predicting a rapid growth of in the number of
connected devices of this type (see Figure 1.1).

We see a large variety of examples of (consumer-targeted) IoT devices pre-
sented in the last years fitting Ashtons definition, some shown in Figure 1.2: The
Netamto Weather Station allows to measure several environmental properties such
as air temperature, humidity, CO2 level and noise [PD]. The Belkin WeMo Insight
Switch allows to remote-control the power supply to power-plugged devices and
assess their energy consumption [Bel]. The Jawbone UP24 wrist band can measure

1

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Introduction

Image: http://www.kaizen-factory.com/2013/10/26/the-internet-of-things-next-revolution-or-
smooth-transition/

(labels edited for readability)

Figure 1.1: Connected IoT devices (in billion). Values from 2013 onwards are predictions.

personal activity during night- and daytime and monitor sleeping behavior as well
as aid in working out [Jaw]. All these devices come bundled with smart phone-
or cloud-based applications that make them more useful to the end user: The Ne-
tatmo Weather Station application uses the measured values to provide warnings
about air quality and a sophisticated user interface that allows to analyze weather
history and forecast future weather conditions. The WeMo Insight application al-
lows to track energy consumption of a connected appliance and can, for example,
estimate the monthly energy cost for that appliance. Additionally, devices can
be power-cycled remotely via smart phone or automatically by the time of day.
The UP24 smart phone application is specifically designed to set personal goals
for improving habits in terms of sleeping, diet or training.

Each of these devices are sophisticated, useful products on their own, some of
which connect to the Internet to increase the value of the application by incorpo-
rating additional data sources or making use of centralized cloud storage. Vendors
of consumer articles seem to agree on the use of established protocols like 3G,
Bluetooth, Zigbee and WLAN on the low layers and thus usually integrate easily
into existing home networks. To that end, there is a general trend of the usage of
standardized communication protocols established in practice. However, on higher
layers the formats of data exchange are usually vendor-specific, not always publicly
documented and targeted at machine-to-user communication.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3

Image: http://netatmo.com Image: https://belkin.com Image: https://jawbone.com

Figure 1.2: Examples of current IoT products. From left to right: The Netatmo Weather
Station, the Belkin WeMo Insight Switch, the Jawbone UP24 wrist band.

At the same time, there is a strong and growing interest for integration of
these diverse IoT components with each other and with services and applications
on the Web on a data layer. This trend is witnessed by recent practical integra-
tion approaches (Figure 1.3): The web service “If this then that” (IFTTT) [IFT],
provides its users with the means to create simple rules that connect triggers
from different channels to actions on other channels. At the time of this writ-
ing, IFTTT supports 104 distinct channels, including popular web services such
as Facebook [Fac], YouTube [You] or GitHub [Git] and IoT appliances such as the
Belkin WeMo Insight Switch, the Jawbone UP24 wrist band and Netatmo Weather
Station introduced above. Example rules could switch off a WeMo plug whenever
the UP24 detects sleep, or post a Facebook update when the user achieves its step
goal as measured by UP24. Another practical integration approach is presented by
the Ninja Sphere [Nin]: The Ninja Sphere can track objects and users and provide
its users with location-based services. It allows, for example, to inform the user
about a left-on heating device and give him/her (via smart phone) the possibility
to turn it off remotely, or for a user to control the light in the room he/she cur-
rently is in via his/her smart watch. The Ninja Sphere supports a variety of IoT
devices such as the Belkin WeMo, the Phillips Hue [Kon] and the Pebble smart
watch [Peb].

In addition to this movement of integrating existing IoT appliances with each
other we also witness a development towards more user-controlled, multi-purpose
IoT sensing devices, targeted at user-customized installation, tinkering and even
user application development. The Ninja Blocks [Nin] system provides a variety of
wireless sensors that can sense temperature, motion or button presses. The vendor
specifically encourages tinkering with the devices and installation of user-provided
embedded or centralized applications and provides full compatibility with the pop-

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Introduction

Image:
http://www.kickstarter.com/projects/ninja/ninja-sphere-next-

generation-control-of-your-envir

Image:
https://ifttt.com/netatmo

Figure 1.3: Integration of IoT components. Left: Prototype of the “Ninja Sphere”.
Right: Example IFTTT rules involving the Netatmo Weather Station.

ular Arduino [Ard] platform. The VARIABLE NODE+ [Var] provides a wireless
sensor platform with exchangeable sensor- and actuator plugs and can be used for
a variety of applications such as reading bar codes, measuring light, air- or surface
temperature and air composition, shown in Figure 1.4. Additionally, the vendor
provides an Input / Output plug, that provides controllable I/O pins for custom
user applications and extension. These approaches of empowering the end users
in using their IoT devices and building custom applications pose new demands on
integrability of devices and applications: Whereas in the formerly presented ap-
proaches devices and software applications were shipped as an atomic bundle, for
this type of devices the application it not known a priori. What data will the user
or application access? Where should it be communicated? What other devices is
the device going to interact with? These questions stress the second meaning of the
term “Internet of Things” we introduced: A high degree of connectivity between
different devices and applications. The idea of carefully integrating the multitude
of upcoming IoT appliances into platforms such as IFTTT or the Ninja Sphere
one by one however does not scale in the long term: Code has to be added specific
for the API of each new appliance and user-defined applications (such as IFTTT
rules) are not reusable in that they still refer to specific products and vendors.

Consider a simple, user-defined home automation application: A contact sensor
observes the open–closed state of a window. Whenever the window is being opened,
the smart power plug should cut the power to the air conditioning device to avoid
a waste of energy. A possible, IFTTT-like formulation could be “IF sensors 42

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

5

Images: https://variableinc.com

Figure 1.4: VARIABLE NODE+ with some of the available exchangeable sensor plugs.

measures contact loss THEN turn off power plug 23”. Ideally, we would rather
like to express our applications in the spirit of “IF a window is open in any room
$x THEN turn off all AC devices in room $x”. Note how much more generic
and reusable this second formulation is: It can work with any number of window
sensors and any number of AC devices and matches them to the same room. More
important, it does not include (a) any implicit assumptions about where sensors
are installed and what they are observing (b) access to the raw sensor information
(“contact loss”). This level of abstraction, considered at a general level, requires
the following preconditions:

1. A description of the sensor and actuator devices: What are they observing?
What does that mean for the application? Where are they located? How
can they interact with the real world?

2. An infrastructure that allows to obtain the information asked for in the
query: As the second query does not address sensors explicitly, other means
of accessing this information need to be provided.

We pose the following questions: How can we express—on the data layer—such
information in a way that any thinkable future application scenario remains pos-
sible, yet still have it be descriptive enough to enable reuse of knowledge across
different applications and devices? The simple query shown above only accesses in-
formation about sensors, how can we incorporate knowledge from remote databases
or data publicly available on the Web such as company time tables, large-scale lo-
cation information or weather services? What is the cost of such a knowledge
representation, and where can this knowledge reside? If queries do not address
specific devices anymore, how can we still make this knowledge accessible?

A lot of research is currently in progress that aims to address these and sim-
ilar questions from different perspectives: The European Union project Internet
of Things Architecture (IoT-A) [BBB+12] was started in 2010 and concluded in
November 2013. IoT-A’s mission was to create architectural foundations for the
Internet of Things for addressing questions like integration, self configuration and
orchestration. Figure 1.5 gives an overview over a fraction of their outcomes,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6 Introduction

Image: [BBB+12]

Figure 1.5: IoT-A deliverable D1.5: IoT service and Virtual Entity abstraction levels.

namely the conceptual integration of the physical world, the several IoT services
and the IoT system with its Virtual Entities—virtual representations of observed
or controlled real-world objects. The EU project iCore [iCo] implements a realiza-
tion of the IoT-A architecture, abstracting over device heterogeneity and individual
devices towards a representation of the observed real-world objects.

In parallel, the European Union funded the project Semantic Service Provision-
ing for the Internet of Things using Future Internet Research by Experimentation
(SPITFIRE) [SPIa]. SPITFIRE addresses this set of questions by consequently
connecting the IoT to the Semantic Web [BLHL01] and emphasizing the elevation
of embedded devices to self-describing first-class citizens of the future Internet of
Things.

Thesis Outline. This thesis addresses the question of how Semantic Web tech-
nologies can be used to describe IoT devices efficiently to provide a better integra-
tion. In Chapter 2 we analyze existing standards for describing embedded devices
with respect to their expressiveness and universality. We introduce the Semantic
Web and show how the description methodology it offers can improve on these
existing standards. Chapter 3 discusses the storage of semantic descriptions di-
rectly on the resource-constrained embedded devices with a focus on determining
the overhead, especially in terms of energy consumption of such a data model.
In Chapter 4 we address the question of how we can further abstract from the
description of embedded devices discussed so far. In particular, we raise the ques-
tion of how these device descriptions can be converted into knowledge about the

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

7

real-world objects an application programmer is interested in. This abstraction,
as we demonstrate, can then be utilized for semantically-informed energy conser-
vation schemes and thus compensate for some of the overhead introduced for the
more verbose semantic descriptions. Finally, Chapter 5 discusses how to approach
querying of the descriptions on the devices when it is not feasible to stream all
data proactively out of the embedded network.

Throughout these chapters we focus on the use case of a home application
scenario in which it is useful for devices to be able to communicate directly with
each other without the necessity for a centralized service. However, the ideas and
techniques we discuss are of much broader scope and are applicable in many IoT
scenarios.

Collaborations. The papers on which this work builds are the result of col-
laborations with other people. Alexander Kröller contributed many ideas and
thoughts to almost all aspects of this work.

The implementations presented in this work found largely on the embedded al-
gorithms library Wiselib [Bau12], formerly maintained by Tobias Baumgartner
and developed in the course of the EU-project WISEBED [Sev08].

Many people contributed implementations in form of Wiselib components or
external software that interfaces with our reference implementation in different
ways. These include many partners of the SPITFIRE project, the Wiselib com-
munity as well as various students.

The work presented in Chapter 3 contains ideas and implementations that are
the result of a close collaboration with Max Pagel. Ioannis Chatzigiannakis
and Dimitrios Amaxilatis contributed ideas to the work in Chapter 4 and also
several Wiselib components used by our implementations, such as the advanced
neighborhood discovery mechanisms used by the implementations presented in
chapters 4 and 5. Chapter 5 is the result of a collaboration with Christian von
der Weth, Marcel Karnstedt and Dennis Boldt in terms of both ideas and
implementations.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Chapter 2

Knowledge Integration for
Embedded Systems

Clara: When you say mobile phone, why do you point at that blue box?
The Doctor: Because it’s a surprisingly accurate description!

Clara: Okay. We’re finished now.
Doctor Who

In this chapter we discuss our vision on how devices in the Internet of Things
(IoT) can be integrated with each other and the existing Internet. This integration
poses a number of challenges, starting with heterogeneity of embedded devices
hardware. As devices are deployed for different use cases and produced by different
vendors, integration approaches must deal with a variety of hardware architectures.
Moreover, devices may also differ drastically in terms of capabilities and resources
provided to an application. Due to differing deployment demands, the problem of
integration on a protocol level has to be considered. Standardization bodies such
as the Internet Engineering Task Force (IETF) [Int] and the World Wide Web
Consortium (W3C) [Wor] provide widely accepted protocol standards, however
in some deployments other means of communication might be necessary. Thus,
an IoT infrastructure has to provide the possibility of an exchangeable protocol
stack. Finally, in order to exchange knowledge between devices and applications
in a universal and future-proof way and to allow true plug-and-play behavior,
we identify the necessity for a universal data representation format. This format
should be applicable to any knowledge domain so the exchange of information of
future applications is not constrained to a limited vocabulary.

We open the chapter with a brief description of a use case scenario that provides
a conceptual environment for later examples in this and the following chapters.

9

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

10 Knowledge Integration for Embedded Systems

Figure 2.1: Exemplary home automation scenario. A lightweight wireless router connects
some of the IoT devices to each other and with the Internet. Devices may also interact
directly with each other.

We then discuss the integration of the Internet of Things and the current Inter-
net through different abstraction layers, starting with hardware heterogeneity in
Section 2.2, then working our way up to protocol-level integration in Section 2.3.
Finally, we discuss the integration of the data or knowledge exchanged via these
protocols in greater depth: Section 2.4 identifies what such a knowledge represen-
tation must accomplish to achieve universality. Section 2.5 then examines existing
approaches and to what extend they comply with these demands. In sections 2.6
and 2.7 we introduce the Semantic Web and discuss its current connection to the
IoT and to what extend it can address the demands for knowledge integration we
identified.

2.1 Use Case Scenario

In order to see what demands for universal communication and representation
of knowledge arise in Internet of Things applications, we consider the use case
of building- and home automation systems. Although we draw exemplary con-
siderations mostly from this scenario, our emphasis on universality ensure our
considerations apply equal to other IoT scenarios such as Smart Cities, factory
monitoring and others.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.1 Use Case Scenario 11

Building automation refers to the automation of a wide array of building-related
control tasks such as climate control, presence detection and room scheduling, pro-
filing the operating state and energy consumption of appliances, lighting and se-
curity [KNSN05]. Home automation describes building automation in the context
of a residential home. This includes the control and/or monitoring of household
devices (such as washing machines), temperature control (heating, ventilation, air
condition), lighting, security (locks and alarm systems) and entertainment me-
dia (such as television). Home automation systems are usually administered by
the inhabitants with little or no professional assistance. This situation naturally
demands for plug-and-play solutions. That is, it should be easy for a user to
install and set up the system and extend it by new, off-the-shelf devices—some
examples of these devices were introduced in Chapter 1. Current building- and
home automation approaches provide sophisticated features and extensions, but
rarely a wide interoperability with products from other vendors or different types
of systems, although that would be beneficial for the user.

Although in certain settings it is possible to connect all automation devices to a
power line, in other situations this might not be practical because devices are to be
attached to unfavorable locations (such as high windows), have to be relocatable
on the fly or are attached to a movable object such as a desk chair. In such a case
the embedded devices have to rely on battery power and energy conservation is
essential. Thus, energy costly radio communication has to be avoided to maximize
the devices life time.

Despite from being a fast growing application market, home automation is a
particular challenging scenario for IoT integration for the following reasons:

• It is desirable to allow plug-and-play style installation of the devices by
untrained users; that is, deployment of devices must not involve a complex
configuration step.

• Moreover, devices cannot be expected to be installed statically, but might
be occasionally repositioned. Due to urban WLAN and running appliances
the network topology is subject to change.

• A user of a home automation system might be interested in successively
expanding his/her system by new off-the-shelf components. These must be
expected to be produced by different vendors with different applications in
mind but should be integrated and form a joint IoT network.

Figure 2.1 sketches an example installation in which a number of IoT devices
provide different services and allow for different interactions. A lightweight wireless
router such as commonly present in most homes can serve as gateway to the
Internet.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

12 Knowledge Integration for Embedded Systems

2.2 Hardware Abstraction

The powerful devices that we currently see in the Internet have gained their
popularity—among other reasons—because they are compatible in the sense that
it is possible to develop applications that are usable on a large number of those
devices. This universality is made possible by integration and abstraction on
multiple layers: Modern operating systems can be compiled for different CPU
architectures and thus provide uniform access to hardware for many platforms.
This approach has some limitations: Operating systems cannot be ported to all
hardware, for either legal or marketing reasons and because the design goals of the
hardware might be incompatible with the design goals of the operating system.
To nevertheless provide functionality such as establishment of a secure connection
or processing of certain file formats to an application developer in a uniform way,
portable libraries and applications provide the same functionality on different op-
erating systems. Probably most important for the extensibility of the Internet is
the notion of standardized protocols for communication. These agreements allows
the development of new services (such as databases or web services) and applica-
tions (such as browsers or email clients) in a reusable way and makes it possible
to provide components that are meaningful independently of the implementation
of the components they interact with.

For the IoT this integration on multiple levels provides new challenges: Hard-
ware is much more diverse than in the common Internet, not only in terms of
different processor architectures in use but also in terms of available resources and
peripherals. In Chapter 1, we have already introduced some of the IoT devices
currently available at the consumer market. As these devices fulfill very diverse
tasks and are produced by different vendors, we can inadvertently observe a large
variety in terms of employed hardware. Table 2.1 illustrates the CPU architectures
and means of communication found in some of these systems, ranging from very
constrained devices with few kilobytes of RAM to full-blown 32-bit machines with
megabytes or even gigabytes of RAM, capable of running desktop-class operating
systems such as derivatives of Linux [Linb].

This variety makes it impossible to provide a single operating system that can
support all these devices fully an efficiently. Moreover, it makes it nontrivial to
provide libraries which are usable on all these systems. Consider an algorithm
for compression of data: Where the necessary system resources are available, such
an algorithm might profit heavily from storing the document to be compressed
in RAM completely so that all redundancies in the document can be identified
and exploited for compression. On a less powerful machine however, that might
not be possible and the algorithm can only consider a file in a streaming fashion,
processing each consecutive chunk of data individually. A similar observation
holds for communication protocols: Due to the large variety in terms of available

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 Hardware Abstraction 13

Product CPU RAM Communication
Type Bits MHz kB Peripherals

VARIABLE NODE [Var] AVR 8 16 8 BT, BTLE
“Girogo” bank card [Inf], Fig. 2.2 80251 16 33 8 NFC
TMote Sky Sensor Node [Mot] MSP430 16 8 10 IEEE 802.15.4
ioBridge iota [ioB] PIC 16 8 16 Eth, or WiFi
Pebble Smart Watch [Peb] ARM 32 120 128 BT, BTLE
Linksys WRT54G v8.2 [Lina] MIPS 32 240 2,048 Eth. x5, WiFi (AP)
Ninja Blocks Base Station [Nin] ARM 32 1,024 524,288 Eth.

Wireless shield AVR 8 20 2 433MHz Radio

Table 2.1: IoT hardware configurations. Communication peripherals neglect US-
B/UART (which is present in most considered systems primarily for flashing, debugging
or charging of the device). BT : Bluetooth [Blu], BTLE : Bluetooth Low Energy, NFC :
Near-Field Communication [NFC], Eth.: Ethernet [IEE12a].

Image: http://commons.wikimedia.org/wiki/File:Überlagert.jpg

Figure 2.2: The “Girogo” bank card. A partial x-ray scan reveals chip and NFC antenna.

hardware there cannot possibly be a single communication protocol supported
by all devices in all deployments. Still, it is desirable to not have to rewrite
applications for each protocol in use; protocols should be exchangeable depending
on the target platform and network configuration.

The operating systems Contiki [DGV04] and TinyOS [LMP+05] have been
ported to a variety of resource constrained platforms commonly used in the context
of Wireless Sensor Networks (WSN) and thus provide means of abstraction that
allow a development of code for all these platforms with a single code base. Both
systems focus on constrained embedded devices without hardware support for
dynamic memory allocation, e.g., using a Memory Management Unit (MMU).
Unfortunately however, they offer only limited scalability in terms of available
features of the platform such as using dynamic allocation mechanisms where they
are available or easy ways to exchange communication primitives or data structures
within an algorithm to adapt it to a different environment without changing the
algorithms code.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

14 Knowledge Integration for Embedded Systems

2.2.1 The Wiselib

The Wiselib [Bau12] is an open source, modular algorithms library and abstraction
layer for embedded devices. The Wiselib is written completely in C++ and freely
available under the Lesser GNU Public License (LGPL) [Wisb]. It was developed
during the WISEBED [CKM+09, WISa] project which started in 2008. Since then
it received continued development from different EU projects such as WISEBED,
FRONTS [FRO] and SPITFIRE [SPIa] and participated in Google Summer of
Code [Goob] in the years 2012, 2013 and 2014. On the lowest layer, the Wiselib
offers interfaces to a variety of underlying platforms such as Contiki [DGV04],
TinyOS [LMP+05], Arduino [Ard], OpenWRT [Opeb] the Shawn network simu-
lator [FKFP07] and many more. On top of that, the Wiselib offers a large fund
of data structures and utility functionality and, on the highest abstraction tier—
algorithms from a variety of categories including localization, routing and graph
theoretic algorithms as well as a number of communication protocols.

The Wiselib relies heavily on C++ templates for abstraction in the same spirit as
the C++ Standards Template Library (STL) [SL95], Boost [DAR] and the Compu-
tational Geometry Algorithms Library (CGAL) [FP09]. Similar to these libraries,
the Wiselib provides abstraction of components by the means of concepts. Con-
cepts are pieces of documentation that specify the behavior of a group of classes,
such as defining which methods, members and type definitions every class im-
plementing the concept must provide. It is thus similar to an interface definition,
however is not enforced by the compiler but rather documentation for the (human)
programmer. Classes adhering to one or more concepts are called models, we also
say a class models a certain concept. This compile-time abstraction mechanism
avoids the need for runtime dispatch, as dispatch is handled completely by static
binding.

The Wiselib provides a modular architecture in several regards: Modules can
be substituted with alternative implementations by the change of a template pa-
rameter. This flexibility allows not only to easily exchange used data structures
and, e.g., alternate between the use of static or dynamic memory utilization but
also to substitute algorithm implementations, substitute the simple radio commu-
nication with a routing algorithm or transparently en- and decode messages before
sending or storing them. The Wiselib carries this idea down to the operating sys-
tem abstraction itself such that the OS is—like any other module—a template
parameter to the application and its used algorithms. This way, by changing a
template parameter and recompiling an application can not only be altered to work
with different data structures and sub-algorithms, but can effectively be ported to
a different platform.

Whereas some embedded platforms such as Coalesenses iSense [BP07] support
C++ natively, many platforms target at the use of C or (in the case of TinyOS)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2.2 Hardware Abstraction 15

the C extension nesC [GLVB+03] instead. As these platforms commonly rely
on the GNU Compiler Collection [Fre], supporting compilation of C++ code is
straight forward. However, the libstdc++ library which provides support for
features such as dynamic memory allocation, run-time type information (RTTI),
exceptions and virtual inheritance is not available on these systems. Also these
features would imply considerable overhead for some of these resource-constrained
platforms in terms of runtime and memory consumption, so their implementation
for all platforms is not useful. Thus, the Wiselib only uses an “extremely portable”
subset of the C++ language, avoiding the features mentioned above and rather
implement abstraction by the means of C++ template mechanisms at compile time.
In contrast to most other abstraction approaches, this allows for full compile time
optimization (such as method inlining) and avoids the call overhead implied by
runtime dispatch. As the Wiselib is included as a set of C++ header files, it does
however not restrict the application programmer from using whatever C++ features
are made available to him/her by the target platform.

Among others, the Wiselib features implementations for 6LoWPAN [KMS07]
and CoAP [SHBF11] (both discussed in greater detail below) and thus allows
communication on a protocol level using open standards.

The Wiselib serves as foundation of our reference implementations which we
present later in this work. In the course of the development of these implementa-
tions, we contributed several extensions to the Wiselib that are of general use to
the Wiselib community:

Block Memory Interface. We contributed several modules related to block
memory devices, specifically Secure Diginal Cards (SD cards) [SD]. SD cards
provide an inexpensive and exchangeable mass storage medium, can be accessed
directly via the SPI bus and are thus available on many embedded devices. To
ease developing and testing of block memory oriented algorithms and data struc-
tures, we provided two block memory implementations that are usable on PC (and
possibly other) platforms even without access to physical block devices: The RAM
Block Memory module provides a volatile block memory in RAM that can be eas-
ily inspected during runtime. The File Block Memory in contrast provides access
to any file in a Linux file system in a block-oriented fashion. This implementation
allows to either work on image files—which may be easily inspected, exchanged
and manipulated with common operating system tools—or directly on device files,
providing access to the blocks of a hard drive partition, USB stick or any other
Unix block device. SD Card interfaces for Arduino and Coalesenses iSense have
been provided.

For platforms on which both block memory and sufficient RAM is available we
provide the Cached Block Memory module that provides transparent caching of

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

