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Chapter 1

Introduction

The knowledge of behavior of liquids with free surfaces to their surrounding gaseous phase

in compensated gravity is essential to the development of tank systems for spacecrafts. In

microgravity, the liquid behavior is dominated by capillary forces, which are used to position

and redistribute liquid propellant in a desired way for the mission. The body forces occurring

due to residual accelerations, which can be caused by spin during the ballistic flight phases,

force the liquid to reorient towards a new equilibrium state of the free surface. Due to spin the

liquid is driven away from the tank outlet and located along tank walls in partially filled tanks.

To assure enough liquid fuel over the tank outlet, so-called Propellant Management Devices

(PMD’s), are employed. A PMD is a static, usually metal structure, which either provides

a passage way for a liquid in microgravity or stores a certain amount of liquid at a desired

location. Some PMD’s are designed to be refillable in periods of microgravity due to openings

in the outer housing or by a housing composed of perforated metallic sheets. These reservoirs

are refilled in periods of compensated gravity in order to provide the required amount of liquid

fuel for attitude control or other maneuverings. Relatively large disturbances, such as lateral

accelerations and spin, can drive the liquid fuel out of the reservoir, resulting in malfunction

of the device. During spilling, gas enters the device such that only a residual amount of liquid

propellant can be kept in the reservoir. Moreover, the connection to the bulk liquid in the tank

may be interrupted such that refilling of the reservoir is disrupted. Hence, a PMD with two

parallel disks forming the inlet and a venting tube at the topmost point of the outer housing

shall be designed such that its refillable structure is only filled with liquid without any gas or

vapor being easily trapped during operations.

Goal of this work is to understand the liquid free surfaces behavior influenced by centrifugal

accelerations in microgravity. For the analyses, a generic model of a refillable reservoir is used

consisting of two coaxial circular disks, either without segments or segmented by vertically

mounted baffles being distributed evenly along the disk perimeter. A tube is assembled at

the center of the upper disk representing the venting tube of the PMD. The intention is to
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2 CHAPTER 1. INTRODUCTION

determine the angular speeds at which initially stable menisci fail to sustain. Here, four cases

are investigated: for relatively large angular speeds, the initially convex meniscus between the

disks bulges outwards to the point, when the capillary forces cannot balance the centrifugal

forces, and the liquid spills out of the space between the disks. This case is called supercritical.

The second case is for large radii of the central tube and small separation of the disks, the

meniscus in the central tube becomes unstable before instability of the free surfaces between

the disks occurs. For the third case, if the angular speed is negligible, for a certain combination

of geometrical parameters, capillary rise occurs in the tube, and the liquid between the disks

moves towards the center of the model. A fourth case is for an appropriate choice of geometrical

parameters and small rotation: equilibrium of the free surfaces in the tube and between the

disks establishes.

In the first part of this study, the profiles of the menisci between the disks and in the tube

in equilibrium and the stability limit of the free surfaces in the rotating models are computed

for varied geometrical parameters. For this purpose, sets of differential equations describing

the pressure balance are solved by means of the Adams-Bashforth method to determine the

meniscus profiles. Solving an additional equation including the perturbation gives the stability

limit due to maximum curvature of these menisci. Computing the profiles, the corresponding

boundary conditions are taken into account for the meniscus in the central tube and the free

surface between the disks, respectively. For the free surface between the disks, the pressure

difference across the interface in the central tube at its axis of rotation is implemented in

the related set of equations determining its shape and stability. Moreover, free surfaces in

equilibrium without rotation are computed. For this case, the aspect ratios of the tube radius

and the distance between the disks are determined, for which no capillary rise occurs in the

central tube yet.

However, analytical solutions for the shape and the stability limit of the free surfaces can

only be obtained for the unsegmented models. For segmented models, analytical solutions are

difficult due to the three-dimensional nature of the curved surfaces at the outer rims of the

circular disks. Hence, shapes and stability are studied with the numerical program Surface

Evolver by Brakke [13]. This tool only provides statical solutions for the meniscus shapes

under user-defined constraints, i.e., all dynamical effects, e.g., occurring during reorientation

from a change of longitudinal acceleration, are neglected. The graphical user interface SE-FIT

[22] allows an efficient study of a wide range of parameters using the routine Parameter Sweep

Function (PSF). PSF allows an automatic change of selected parameters such as angular speed

and radii.

This first study only provides information about the free surfaces in equilibrium by solving

the pressure balance with related constraints: static contact angle, a moving contact line at

the tube wall and a fixed contact line at the outer edges of the disks. These results are

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



3

compared to experimental data, for which so far neglected dynamical effects, i.e., friction,

inertia and damping behavior, play an important role. To include dynamical effects, the CFD

tool OpenFOAM R© is used to study the liquid behavior in the rotating models. The goal of this

part is the determination of the free surface stability in selected models considering dynamical

effects. The angular speed is kept constant for each computation to allow comparison to

the results of the statical numerical analyses, for which solid-body rotation is valid. From the

simulations, pressure fields and velocity distributions are computed for angular speeds resulting

in stable configurations of the free surfaces or unstable ones. Hence, regions of maximum and

minimum velocities and pressures are determined with respect to sub-critical and supercritical

cases.

The results of the previous analyses are compared to those of drop tower experiments. With

the assumption of solid-body rotation, the rotation was established some time before the free

fall. At a constant angular speed in each test, either oscillatory movements of the free surfaces

around constant locations or instability of the free surfaces, when the meniscus, initially being in

the central tube, moved into the space between the disks, was observed. Additionally, because

of the limited number of tests, the critical angular speed related to maximum curvatures could

not be identified. For comparison, the sets of parameters investigated in the experiments are

studied with OpenFOAM R©. In contrast to the experiments, the duration of the simulation

was extended to observe the damping behavior of the liquid before reaching equilibrium or

instability of the free surface movement.

This work is divided as follows. In Chap. 2, the theoretical background is described for

understanding the behavior of free surfaces in rotating systems. It is followed by an overview of

the literature which contains analytical and experimental studies about the shape and stability

of menisci in rotating systems. Moreover, free surfaces with constant mean curvature relevant

for the models without rotation are introduced. A short overview of the possible application

of the PMD is given. The goal of this work is deducted from the theoretical background. The

relevant mathematical formulations for determining shape and stability of the free surfaces

under rotation in the unsegmented models are given in Chap. 3. The scaling of the relevant

parameters and equations is shown. Additionally, the limiting cases are investigated: for the

unsegmented models without rotation, the geometrical aspect ratios of the central tube radius

and the distance between the parallel disks are determined for which no capillary rise occurs

in the central tube. The shape of the corresponding menisci between the disks are computed.

Additionally, the critical values of the rotational Bond numbers, related to the angular speeds,

are determined giving the stability limit of the free surfaces in the unsegmented models. A

criterion is derived to distinguish if the meniscus either in the central tube or between the

disks becomes unstable for a supercritical Bond numbers. After an introduction of the Surface

Evolver, an overview of the applications of this numerical program is provided in Chap. 4. A
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benchmark case and the numerical models are described, before presenting the results of the

computations. Cases with stable equilibrium menisci are given for segmented and unsegmented

models. The critical values of the rotational Bond numbers for a wide range of geometrical

parameters are shown. Dyson’s inequality condition [42] is taken into account to show the

dependence of the stability limit of the free surface between the disks on the static contact angle.

Additionally, solutions for the meniscus profiles in the tube and between the disks are given for

the limiting cases without rotation and compared to those of the numerical integration. Chap. 5

gives a brief overview of applications of the relevant OpenFOAM R© solver. The modification of

this solver is introduced providing stability of numerical schemes. Results for different model

configurations for sub- and supercritical Bond numbers are presented. In Chap. 6, the setup

and settings of the free fall tests are described. The settling times of the free surfaces and other

dynamical effects are determined in experiments performed without rotation. The results of

all the analyses and the experiments are compared in Chap. 7. After a summary of this work

in Chap. 8, a possible application of the tested models with related free fall experiments of the

application is provided in Chap. 9.
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Chapter 2

Theoretical Background and State of

the Art

2.1 Rotation

Three types of rotating bodies can be distinguished. The simplest one is a body rotating around

its axis with a constant angular speed and being in the state of solid-body rotation, for which

the Coriolis force can be neglected. In the second case, this body is additionally in movement

with a constant velocity. A third case occurs when there is angular speed only which does

not change with time. The general form of the acceleration for a rigid body in rotation writes

according to White [122]

a =
dv

dt︸︷︷︸
translational motion

+
dΩ

dt
×R︸ ︷︷ ︸

temporal change of the rotation

+ Ω× (Ω×R)︸ ︷︷ ︸
centripetal acceleration

. (2.1)

The velocity in the translational motion is

v = v0 + Ω×R , (2.2)

where v0 is the velocity at the center of mass of the rigid body, R corresponds to the vector

from the initial location of the center of mass to a point P , and Ω is the angular speed. The

temporal change of the rotation characterizes the linear acceleration due to changes in Ω.

White [122] claimed that for most of fluid flows rarely all three terms are relevant. The

author gave the microgravity environment as an example, in which the state of solid-body

rotation can be reached in a finite amount of time. In this work, solid-body rotation is assumed

for the models (see Chap. 3), and for this state Eq. 2.1 simplifies to

a = Ω× (Ω×R) . (2.3)
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6 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

The acceleration due to a constant angular speed can be also written as

arot = ϕ̇2R , (2.4)

where ϕ̇ = |Ω| is the angular speed and R the corresponding radius.

For a rigid body rotating around its axis, the Coriolis force writes

fC = −2

∫∫
V

∫
ρ(Ω× vt)dV , (2.5)

where vt characterizes the velocity relative to the reference system (compare Fig. 2.1). The

acceleration caused by the Coriolis effect writes

aC = −2 (Ω× vt) . (2.6)

It results from the change of velocity in time and the variation of the velocity with position of

a point mass.

Ω Ω

fC

vt

x

y

z

Figure 2.1: Coriolis force acting on a rotating point mass (black dot).

2.2 Surface Tension

A fluid forms an interface with another fluid, when the two are in contact with each other.

In the bulk liquid, the molecules are packed close since they attract each other. At the free

surface, half of the neighbors of the molecules are missing compared to the molecules in the

bulk liquid. Therefore, those molecules at the interface are under tension. If the liquid is in

contact with a gaseous phase, this results in an unbalanced cohesive force to the inside of the

liquid [3]. A work has to be executed to bring the molecules from the inside of the liquid to

the free surface. The increasing number of molecules at the interface causes an enlargement of

the free surface area due to the specific work dW . Hence, the surface tension can be described

by [122]

σ =
dW

dA
=

F ds

L ds
=

F

L
, (2.7)
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2.2. SURFACE TENSION 7

where L is the length of the area. When isothermal conditions are assumed, dW equates the

free surface energy Esur. The coefficient of the surface tension σ can be expressed as the ratio

of the free surface energy and the surface area [3]

σ =
Esur

L ds
. (2.8)

The value of the coefficient σ depends on the temperature and the pressure of the fluids [86, 103].

With decreasing pressure or decreasing temperature, the value of σ increases.

For a liquid-gas-system, the curved surface provides a resulting force into the bulk liquid.

The force leads to an increase of the cohesion pressure for convex-shaped free surfaces, while

this force reduces the cohesion pressure for concave surfaces. The relation for the change in

pressure due to curvature can be illustrated on a single fluid element dA.

R1

R2

O1

O2

σ dL1

σ dL1

σ dL2σ dL2

Figure 2.2: Single fluid element dA with the principal radii R1 and R2.

From the element dA, the tangential forces F1 and F2 act on the vicinal elements of dA and

provide a resulting force directed into the liquid. The forces can be expressed by

F1 = 2 σdL2 sin (ψ) and F2 = 2 σdL1 sin (ψ) . (2.9)

The angle ψ << 1 can be assumed. Therefore, sin (ψ) ≈ ψ such that ψ writes

ψ =
dL1

2R1

=
dL2

2R2

, (2.10)

which results in 1
2
dLi = ψRi. Hence, the forces Fi can be written as

F1 = σ
dA

R1

and F2 = σ
dA

R2

, (2.11)

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 
Es gilt nur für den persönlichen Gebrauch.



8 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

where dA = dL1 dL2. Dividing Eq. 2.11 by the element area dA, the pressure difference at the

liquid surface is determined by the Young-Laplace equation [1]

Δp = σ

(
1

R1

+
1

R2

)
, (2.12)

where Ri are the principal radii. For convex surfaces, e.g., a droplet, the pressure in the

liquid exceeds that of the gaseous phase. The curvature is positive. Consequently, a negative

curvature is for concave surfaces.

2.3 Contact Angle

When a liquid, being in contact with a second fluid, interacts with a solid surface, the contact

angle θ is formed between the contact line of the two fluids meeting the solid surface. In this

respect, the second fluid can be either a gas, a vapor, or another liquid. The value of θ is

measured by the tangent of fluid 1 to either the interface of another fluid and a solid (see

Fig. 2.3 (a)) or to the interface of two fluids, e.g., another liquid and a gas, at the contact line

(see Fig. 2.3 (b)). Some authors [51, 113, 114, 118] claimed the existence of a micro-zone with

a very thin film at the wall instead of a contact point, where all three phases coincide. The

micro-zone is not of main interest in the macroscopic case and will not be considered further.

Instead, the model of a contact line is used to explain some parameters in the following. The

contact angle is a function of all three materials at this contact line and not a property of fluid

1 and fluid 2.

θsθθ

(a) θ
fluid 2

fluid 1

fluid 3

F12

F13

F23

ψ

(b)

Figure 2.3: Contact angle between (a) two fluids and a solid surface and (b) between three

fluids.
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2.3. CONTACT ANGLE 9

The contact angle can be classified into three different types according to Duquennoy et

al. [40] and Kistler [61]. The real contact angle θreal appears a few molecule layers away from

the solid wall, i.e., 3 to 30 nm. Hence, no continuum mechanics determine its behavior. The

relevant forces and their fluctuations act at relatively small distances between the molecules.

The free surface cannot be regarded as a sharp interface in the molecule layers, it is rather a

surface with a continuous exchange of molecules between the fluids. Due to thermal motion,

a few molecules always enter the other fluid [69]. In a distance of 0.1 μm or closer to the

solid wall, the microscopic contact angle θmic is present. In this region, the density difference

between the gaseous and the liquid phase has a discontinuous change and the surface tension σ

is defined. The measurable contact angle is also known as the apparent contact angle θapp. It

is located at a distance of 1 to 10 μm from the solid wall. θapp differs from the thermodynamic

equilibrium, since the slope of the free surface below the resolution for the observation can be

different. Each type of contact angle is further subdivided into a static and a dynamic contact

angle.

2.3.1 Static Contact Angle

The static contact angle θs appears for contact lines remaining still on solid surfaces. The value

of θs is related to the relative magnitudes of the microscopic adhesive and cohesive forces [37].

For the case of two fluids interacting with a solid surface (see Fig. 2.3 (a)), the solid is able

to compensate the forces normal to its surface. Hence, only the forces tangential to the solid

surface must balance each other. The equilibrium of these stresses along the contact line is

caused by the minimization of energy [69]. The balance of the forces tangential to the solid

surface can be written as

Fgs = Flg cos (θs) + Fls . (2.13)

For this force balance, the body forces, e.g., due to gravitation, are neglected. The forces in

this equilibrium are

Fls = σlsdL1, Fgs = σgsdL1, and Flg = σlgdL1 . (2.14)

Combining Eqs. 2.13 and 2.14 yields

cos (θs) =
σgs − σls

σlg
. (2.15)

This is also known as Young’s equation [3] or Young-Dupré equation as it was first derived by

Young [123]. In case of the three fluid phases (Fig. 2.3 (b)), Neumann’s boundary condition is

given by [122]

σ12 + σ23 + σ31 = 0 , (2.16)
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10 CHAPTER 2. THEORETICAL BACKGROUND AND STATE OF THE ART

and the equilibrium of forces at the contact line yields

σ23 = σ13 cos (θ) + σ12 cos (ψ) , (2.17)

σ13 sin (θ) = σ12 sin (ψ) . (2.18)

For an interface in contact with a solid wall, the boundary condition results from Eq. 2.15

σgs = σls + σlg cos θs . (2.19)

Different phenomena can be observed for various contact angle values θs between fluids and

solids. If θs < π/2, the liquid wets the surface of the solid. With decreasing values of θs an

increase of the liquid surface occurs. For a contact angle of θs = π, the relation σgs + σls = σlg

is valid [122]. This physical phenomenon is called non-wetting. Total or perfect wetting occurs

for zero static contact angles, which is described by σgs − σls ≥ σlg [122]. A zero static

contact angle is typical for cryogenic liquids in contact with metal surfaces and, hence, this

value represents θs in this study.

2.3.2 Dynamic Contact Angle

When the contact line moves over a solid surface, the contact angle differs from the static contact

angle θs and is known as the dynamic contact angle θd. At the advancing contact line the fluid

has the advancing (dynamic) contact angle θda with the solid surface, while the receding contact

angle θdr is the angle between the solid surface and the fluid at the receding contact line. The

process occurs in scenarios such as forced wetting, forced dewetting or spontaneous spreading

[61]. The forced wetting is imposed by hydrodynamic or mechanical forces externally. The

forces cause an increasing of the area between the liquid and the solid beyond the conditions

of the static equilibrium. The liquid or, alternatively, the solid front is driven by a constant

velocity. A stationary coating process is mentioned as an example, during which the solid

body is moved relatively to the liquid. Moreover, Kistler [61] distinguished the wetting process

between a complete wetting and a partial wetting. The complete wetting occurs for non-volatile

liquids with a static contact angle of zero. The dynamic contact angle can be well approximated

and is insensitive to specific liquid-solid interactions. The partial wetting depends also on the

solid roughness which causes a contact angle hysteresis between θda and θdr: θdr ≤ θe ≤ θda

(cf. Fig. 2.4). In this context, θe describes the contact angle at thermodynamic equilibrium. In

the case of spontaneous spreading, the liquid moves over the solid surface unsteadily toward

the thermodynamical equilibrium. Hence, the free energy is reduced with the increase of the

wetted area on the solid surface. An example for this is the wetting process in porous media.

In either forced wetting or spontaneous spreading, the advancing contact angle θda increases

with increasing contact line speed. A higher viscosity of the liquid results in a more significant
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θd

receding

advancing

 v0vc vcv > 0 v < 0
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Figure 2.4: Typical behavior of the dynamic contact angle θd dependent on the velocity of a

solid wall v according to Dussan [41]. For the case of a receding contact line, θd decreases when

v increases in its absolute value. If v > 0, θd increases with increasing contact line speed.

For v → 0, the dynamic contact approaches either the static receding contact angle θsr or the

static advancing contact angle θsa. The measured values (•) for these contact angles θsr’ and

θsa’ can differ from the extrapolated values θsr and θsa, caused by a stick-slip motion of the

contact line.

increasing of θda. In the process of forced wetting, the dynamic contact angle approaches π

when the contact line approaches a critical speed vc. If the contact line speed exceeds vc, gas

bubbles can be entrapped into the liquid layer. For dewetting processes, θd approaches zero if

v approaches vc. In this case, θd decreases with increasing contact line speed.

The behavior of a moving contact line is illustrated in Fig. 2.4. At low speeds of the contact

line, the dynamic contact angle approaches either the static advancing or the static receding

contact angle θsa or θsr. In the lower regimes of the contact line speed, a difference between

the extrapolated contact angles θsr’ and θsa’ and the measured static contact angles θsr and θsa

occurs. This phenomenon results from a stick-slip behavior of the contact line [41, 61]. At these

relatively low velocities, the contact line moves unsteadily over a rough solid surface. Due to

the unsteady movement, the contact line is pinned temporarily on the solid surface. At higher

contact line speeds, this phenomenon often disappears. This stick-slip behavior occurs usually

for partial wetting. If the solid surface is wetted by a precursor film, the no-slip hypothesis

is valid. Spontaneous wetting proceeds faster on prewetted surfaces, e.g., by a precursor film,

compared to dry solid surfaces. In the case of forced wetting, the apparent contact angle is

smaller on a preexisting film compared to dry surfaces. The precursor film is especially relevant

in case of total wetting liquids. This film with a thickness of less than 1 μm propagates ahead

of the wetting line for sufficient slow movements of the contact line [61]. It can be caused
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by evaporation of liquid followed by condensation on the solid surface and structural effects

between the liquid molecules and the solid molecules. For liquid-solid combination with contact

angles θs different from zero, the precursor film is originated from imperfections of the solid

surface. The imperfections act like capillary channels, into which the liquid wicks ahead of the

macroscopic contact line. By means of this film, the spontaneous wetting is increased compared

to dry surfaces, while the forced wetting is slowed down compared to dry surfaces [61]. If θapp is

much larger than zero or if contact line speeds are large, no precursor film can be established.

To summarize, the dynamic contact angle is influenced by the viscosity of the liquid, the

roughness or porosity of the surface, chemical inhomogeneities, electrical charges of the solid

surfaces, and impurities of the materials. Additionally, it depends on the ratios of the densities

and viscosities of the fluids [61].

2.3.3 Pinned Contact Line

In this work, a moving contact line is present. Caused by the upward movement of the liquid

in the tube, the contact line for the menisci between the disks moves towards the center of the

model following Young’s condition for the contact angle (Eq. 2.19). Regarding the stability of

the free surfaces between the parallel disks in terms of rotation, the case of a pinned contact

line has to be considered. In this case, the contact angle is not constant as it is assumed for

the moving contact line in the tube.

The effect of edges on contact lines have been studied widely. Gibbs [47] set up two inequal-

ities to describe the contact line stability on a solid edge for a system with two fluids 1 and 2.

The static equilibrium contact angle θe is measured through 1, while the smooth solid surface

equilibrium contact angle measured through 2 is π − θe. From the Young-Dupré equation,

Gibbs deduced for a contact line, which is located at the edge of a solid

σlg cos(θls) ≤ σgs − σls and (2.20)

σlg cos(θgs) ≤ σls − σgs , (2.21)

where the angles θls and θgs are the angles between the contact line and the solid from the

liquid side and from the gas side, respectively. The notation is explained in Fig. 2.5.

Gibbs’ inequalities can also be expressed by

cos(θls) ≤ cos(θe) and (2.22)

cos(θgs) ≤ − cos(θe) , (2.23)

with θe as the static equilibrium contact angle between the solid and the liquid.

Dyson [42] claimed that these inequalities provided by Gibbs are not sufficient to describe

the contact line stability at edges. He gave a counterexample with a cylindrical vessel made
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θls
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fluid 1 (l)

solid 3 (s)

θgs

δ

Figure 2.5: Contact line between a liquid and a gas at a solid edge for θls > π/2 and δ < π.

of thin rigid material filled with liquid, which is located on the bottom of a rigid rectangular

container filled with another liquid. The immiscible liquids have the same density such that

no body forces act on the system. The liquid-liquid interface is assumed to be the planar disk

bounded by the top edges of the cylindrical container. If the contact angles are chosen to be

θls = π/2 and θgs = 3 π/2, the equilibrium static contact angle is consequently θe = π/3.

This system satisfies Eq. 2.22 but violates Eq. 2.23. Hence, Dyson [42] derived another criterion

to describe the equilibrium condition of a contact line at an edge with an angle δ ≤ π (see

Fig. 2.5)

θe ≤ θls ≤ (π − δ) + θe . (2.24)

This means that a contact line with θe = 0◦ is stable at an edge of δ = π/2 if, and only if,

θls ≤ π/2.

Fang and Amirfazli [44] analyzed the stability of a single liquid drop on a solid edge of a

pillar. The stability of a drop on the top of a pillar was studied by determination of the free

energy of the system depending on the apparent contact angle θapp and the edge angle δ. The

authors distinguished between four different cases for the drop stability. The first case describes

a drop pinned on a sharp edge with a relatively small angle 40◦ ≤ δ ≤ 60◦ (see Fig. 2.6 (a)). In

this case, no movement of the contact line over the edge occurs despite of an increasing of the

drop volume if δ ≤ θs. The energy minimum of the system is reached when θapp = 160◦. With

increasing volume of the drop the most favorable position of the contact line is at the edge of

the pillar. However, Chen et al. [20] mentioned a maximum volume for θ < θcrit beyond which

a stable wall-edge-bound drop fails to exist. In Fig. 2.7, the maximum volume liquid drop on

a solid edge with δ ≤ θs is illustrated by the solid black curve. The dot-dashed solid curve

shows a liquid drop with a volume below the critical value, while the dotted curve refers to an

unstable drop beyond the maximum curvature. In their work, the instability due to maximum

curvature is related to drops on solid plates with zero thickness and finite width.
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Figure 2.6: Drops on pillar. (a) shows an equilibrium configuration for 40◦ ≤ δ ≤ 60◦, while

(b) illustrates the initial drop configuration (dashed line) and the equilibrium configuration for

100◦ ≤ δ ≤ 150◦ (solid line).
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Figure 2.7: Cross section profiles of a liquid drop on a solid for δ ≤ θs according to Chen et

al. [20]. The black solid curve refers to the maximum volume beyond which a stable curvature

fails to exist.

Another case appears for 60◦ < δ ≤ 80◦ and a contact line which is initially pinned at the

edge of the solid pillar [44]. For a critical value of θapp, i.e., θls, the contact line moves over the

edge (compare Fig. 2.6 (b)). Further increase of the drop volume causes an increase of θapp such

that the contact line moves steadily over the edge. For θapp ≤ 160◦, the drop remains stable

on the edge of the solid. However, the free energy in this case does not increase monotonically

with increasing values of θapp. Consequently, this system is regarded to be metastable, and the

contact line will move over the edge of the solid with a slight increase of the energy, e.g., due

to vibration of the pillar.

For 80◦ < δ ≤ 95◦, no drop can be suspended stable on the pillar. Fang and Amirfazli

[44] mentioned the stability limit of a critical edge angle δcrit according to Eq. 2.24 at which

the drop collapses to the side walls of the pillar. To each value of δ in the range of 80◦ to 95◦
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corresponds a value of θapp, at which the drop will split and will move down along the side walls

immediately.

A last case is observed for 100◦ ≤ δ ≤ 150◦: the free energy has a minimum value for all

values of θapp. The authors concluded that, for the contact line, it is not energetically favorable

to stay on the edge of the pillar. However, after moving over the edge, the contact line will

remain at a certain position at the wall (see Fig. 2.6 (b)).

2.4 Shape and Stability of Menisci on Solid Surfaces

Equilibrium surfaces in a cylindrical container with and without the influence of gravity have

been studied widely. A general criterion for the existence and non-existence of a capillary

surface either influenced or not by a longitudinal force was developed by Finn [45]. Chen

and Collicott applied this criterion for symmetric [19] and asymmetric [21] cross-sections. The

simplest case for capillary surfaces occurs when no body forces act on the system. For this

case, one would assume that the shape of free surfaces in equilibrium in rotational symmetric

containers would also be axisymmetric as it is mentioned e.g., by Dodge [37]. Concus and Finn

showed first analytically [31] and later in experiments [32] that the profile is not necessarily

axisymmetric as in exotic, rotational symmetric containers.

Padday [91, 92] analyzed axially symmetric meniscus profiles under the influence of gravity

and classified these profiles into two types [91]. The bounded profiles cross the axis of symmetry

and can be used to describe pendant or sessile drops (see Fig. 2.8). The unbounded type were

labeled rod-in-free-surfaces, e.g., liquid bridges, and hole-in-the-liquid, e.g., annuli, respectively.

A significant difference between these two profiles is that bounded menisci can be described by

two (initial conditions), while unbounded meniscus profiles need three conditions for a complete

definition, since the height of the profile has to be considered. Padday [91] also offered solutions

for bounded menisci influenced by gravity: distorted nodaries to describe the shape of sessile

drops and distorted undularies to characterize the profiles of pendant drops.
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Figure 2.8: Bounded meniscus profiles: (a) sessile drop and (b) pendant drop.
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