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Abstract: Cognitive radar is a young discipline with the claim to open the door for next
generation radar systems providing a higher efficiency, robust operation via intelligent
choice of radar actions, and even a high degree of autonomy. The ideas behind are col-
lected in the two most influential textbooks by Haykin [1] and Guerci [2]. Both contain
also experimental results while there are not much papers else presenting real world ex-
perience. In this paper we summarize the general approach and discuss two examples for
application of cognitive radar.

1. Introduction

Today’s radar systems have reached a level from which new big goals may be set, which are nev-

ertheless realizable in the in the foreseeable future. The necessary tools are available: real time

processing even for sophisticated algorithms with powerful processors, multifunction phased

array systems - with their arbitrary beam steering an ideal platform for the solution of com-

plex surveillance and reconnaissance tasks. Arbitrary waveforms with large bandwidths can be

generated and transmitted. And: everything is programmable, i.e. we may speak of ’software-

defined radar’. Last but not least low-weight high-speed memories with gigantic capacities are

available, an important basis for knowledge-based processing. One of the next big goals is to re-

alize radar systems which can be called cognitive in analogy to the cognitive abilities of human

beings and many animals.

The statement of the cognitive radar pioneer Simon Haykin ’it is indeed feasible to build a
cognitive radar system using today’s technology.’ [3] certainly is true. Cognitive radar aims to

optimize radar performance by intelligent adaption of all radar steering and operational param-

eters in response to properties of the environment available from internal of external knowledge

or even learned by the system during operation. Joseph Guerci declares a goal of implementing

tools that make the radar capable of ’sensing, learning, and adapting to complex situations with
performance approaching or exceeding that achievable by a subject matter expert, especially
for real time operations which demand automation’ [2, 4].

Future radars should posses more ’intelligence’ - whatever this means. We wish to get more per-

formance out of existing handware by optimized use of resources, or vice versa maximization

of the information gain per time unit. Perhaps we also want to get more autonomy to disburden



the operator at least with low-level decisions as the selection of operational modes, but also

as better preparation for more momentous actions. The system should be able to learn from

successes or failures at former radar decisions. Further new architectures and signal processing

tools (as MIMO-radar or compressive sensing) demand very complex decisions to evolute their

potentials also in time-critical situations. Finally the radar system could even pilot unmanned

platforms or give recommendations for this to optimize the radar performance.

Cognitive radar has been studied for different applications: Adaptive waveform generation

[5, 6], e.g. for the enhancement of the signal-to-clutter+noise ratio, optimization of radar net-

works [7, 8], passive coherent location [9], moving target detection with STAP [4],target track-

ing [10, 11], operation in spectrally dense environments [12, 13, 14], channels parameter esti-

mation [15], MIMO radar [4, 16], electronic counter-counter measures [17] and others. There

are also efforts to combine cognitive radar with compressive sensing techniques [18]. Experi-

mental verifications are still rare.

2. Attributes of cognitive systems and radar

Even though the books by Haykin and Guerci share the notion of continuous performance im-

provement through a feedback principle between receiver and transmitter, there is still no gen-

erally accepted definition of where exactly the borderline between a traditional and a cognitive

radar lies. There are however several established technologies that can be considered key en-

ables for the ultimate goal of automating most of the supervision and control tasks, that currently

still mainly rely on radar operator experience and skillset. The list comprises (and is not limited

to) waveform diversity, channel estimation, knowledge-aided processing, resource-management

and optimization technologies, spectrum management and cognitive radio, pattern recognition

and deep learning approaches, appropriate hardware and real-time processing capacities and -

of course - a suited system-architecture and operational concept that connects all the bits and

pieces!

Most authors refer to human cognition as a source of inspiration for the realization of cogni-

tive capabilities in a radar system. In [1] the following definition can be found: We say that
a dynamic system, operating in an environment to be explored, is cognitive if it is capable of
four fundamental functions (tasks) that are basic to human cognition: (1) the perception-action
cycle, (2) memory, (3) attention, and (4) intelligence. All four cognitive functions should be

present and interact, whereas ’intelligence’ is certainly most difficult to grasp!

At Fraunhofer FHR, we motivate our cognitive radar architecture by the Rasmussen-Model of

human cognitive performance [19], which is used in cognitive psychology, human factors en-

gineering and robotics. It asserts that intelligent, goal-oriented human behavior emerges from

several perception - action cycles that are continuously active on three layers with different

levels of abstraction. The three layers here are with ascending abstraction level: the skill-based

layer (signal generation (A) - signal processing (R)), the rule-based layer (recognition (R) - task

scheduling (A)) and the knowledge-based layer (situational awareness (R) - plans (A)). Here,



(A) and (R) denote the actuator-branch or reception-branch, respectively, which map the model

to the radar application, see Fig. 1. The skill-based layer corresponds to continuous signal-

generation and processing processes. The rule-based layer enriches the semantic content of the

perceived data by means of information processing, such as target classification techniques or

inference of a threat state by geometrical considerations. A pre-stored decision rule (’policy’)

then maps this symbolic state information into an immediate reaction to be executed by the

transmitter. The knowledge-based layer represents the highest level of abstraction, incorporat-

ing all the information and knowledge that is available in the system, including e.g. platform

state and mission goals. A knowledge-based reaction is found by online planning and delibera-

tion from first principles on the available knowledge, which is computationally most demanding

but also most flexible to unforeseen situations. The model provides an upward path of informa-

tion aggregation and a corresponding downward flow of decision making, which is common to

sensor fusion (e.g. the revised JDL model [20]). Yet, there are several subtle differences, e.g.

the explicit representation of goals and the control flow between the subfunctions and layers,

that resemble more a hybrid robotic control architecture [21]. In the remainder of this article,

we will give two examples of radar tasks that implement the perception-action cycle on the skill

and rule-based layer.

ReceptorActuator
A

n
al

ys
is

Syn
th

esis

Illumination

Signal 
generation

Signal 
processing

Scene

Echoes

Feedback information

Recognition

Situational
awareness

Task 
assignment

Goals

Tx Rx

A-priori knowledge

Know-
ledge-
based

Rule
-

based

Skill
-

based

Platform

Plans

Task 
scheduling

Figure 1: Three level model of cognitive radar deduced by the general model of Rasmussen



3. The perception-action cycle is a key ingredient to cognitive radar

For general cognitive systems, the perception-action cycle can be characterized as follows, see

Fig. 2: The main task of such a system - regardless weather human being or machine - is to

explore the environment. Thus, the actuator generates stimuli to get a response from it, for radar

are these the emitted waveforms. The response (radar: echo) is gathered by the perceptor - for

humans by the sensory organs, for radar by the receiver. Decisive is the feedback-information

about the gained information to the actuator, to trigger further actions. Most of existing radars

don’t make use of the feedback in a systematic manner - further actions (e.g. type of waveforms)

are more or less independent of the past.

Illumination

Waveforms
transmitter

Receiver, 
signal processing

Szene
Echoes

Transmit Receive
Feedback 

Information

Feedback 
information

Action Perception

Environ-
ment

Actuator Perceptor

Stimuli Response

RadarGeneral

Figure 2: The perception - action cycle in general - also for human beings, and with respect to radar, see [1]

There are several ways to close the feedback loop on the side of the transmitter to optimize some

performance criteria. They range from prestored reaction rules to stochastic control theory. Of

particular importance to the field of cognitive radar is the application of Markov-Decision-

Processes (MPDs) or Partially Observable Markov Decision Processes (POMDPs). As shown

in Fig. 3, MDPs are a natural extension to model Markov processes that can be influenced by

the execution of an action Ai in state Si that gives a reward Ri . The solution to a MDP is

a decision policy that maps each possible state Si to an optimal action Ai that maximizes the

expected reward. The concept can be extended for partially observable states by using POMPDs

which are, however, more difficult to solve. In his book [1], Haykin applied the approach to

derive optimal waveforms with respect to chirp-rate and pulse-length as actions to optimize

tracking state estimation error. However, it is clear that any radar task, whose state fulfills the

Markov-property, and that can be influenced by executing actions for which some estimated

performance metric is available, can be optimally controlled by MDPs or POMDPs.

4. Cognitive target classification

An early example of using this approach was given by Castanon [22] for target classification,

e.g. for airborne surveillance. The objective is to select between a low resolution (Mode 1, RCS

measurement) and a high resolution (Mode 2, Imaging) sensor mode to be applied to a scenario

that contained three different classes of targets K = {1, 2, 3}, whereas the correct declaration
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Figure 3: Markov decision processes are as important to cognitive radar as markov chains are to traditional radar.

Modified from [23]

of class 1 ( v = 1) was the prime goal. The cost function hence gave a higher penalty of c = 2

to missed detections of target class 1 (md) and smaller penalty of c = 1 for targets of class 2 or

3 that were erroneous declared as class 1 (fa).

Fig. 4 shows the initial results of a simulation of 100000 targets done at FHR in which up to

five subsequent illuminations of a target with either the low or high resolution sensor mode

where fused using the Bayes theorem. The problem was modeled as a MDP with state variables

containing the likelihood for each target class, actions representing a target illumination with

sensor mode 1 and 2, and the expected cost after the final declaration. The tree structure shown

in the upper right shows the optimal decision policy for selecting the next sensor mode as a

result of the previous classification (measurement Y = {1, 2}). The comparison of results in

the lower left corner of the figure shows the actual cost incurred with respect to sensor mode

selection strategy and the maximum allowed number of subsequent classifications for a target.

The graph shows, that the dynamic selection of sensor modes according to the optimal decision

policy outperforms the static application of mode 1 or 2 or random toggling.

Even though this example could be augmented further by considering sensor mode resource

consumption, it does indicate how the feedback mechanism of the perception-action cycle can

increase the performance of typical radar tasks.
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Figure 4: Closed-loop classification using MDPs

5. Cognitive MIMO for ground moving target recognition

GMTI for airborne multi-channel radar systems applies Space-Time Adaptive Processing

(STAP) by adaptive estimation of the space-time covariance matrix. This step may be regarded

already a part of cognitive operation, since it implicitly learns properties of the environment

(here: ground clutter) and uses this for signal processing. Nevertheless it is classically limited

to the receive channel; the transmitter (wave form) and the transmit antenna are commonly

driven in a routine mode, for instance by use of chirp waveforms and scanned beams - not

regarding the momentary clutter properties.

Cognitive procedures for GMTI, optimizing simultaneously the Tx and Rx channels, have al-

ready been proposed in literature, also for array antennas in MIMO configurations [4]. Referring

to the terminology introduced in chapter 3, we will present some additional contributions to this

matter addressing techniques adequate to commonly used phased-array frontends (possibly with

small modifications) and real-time operation.

We have in mind an antenna of the type illustrated in Fig. 5 left. It is a fully equipped phased

array antenna with phase shifters whose aperture is divided into a few subarrays in motion



direction. The only difference to a traditional multi-channel architecture is that in Tx the N

subapertures are driven by individual wave form generators.
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Figure 5: Left: Regarded type of MIMO antenna with N transmit and receive subapertures; Right: The MIMO

operation permits the generation of signal vectors with N2 spatial degrees of freedom

This means an only slight modification of the today commonly used phased array, but exhibits

considerable enhancement of performance. The N waveforms fed into the transmit array now

can be described by a matrix A with its columns assigned to the subapertures, see Fig. 5 right.

On the other hand, the rows of this matrix represent a sequence of beamformers. It is obvious

that the MIMO transmitter scatters the energy controlled and coded within the angular sector

given by the mainbeam of the subapertures during the pulselength. For AHA = I the MIMO

receiver is able to decode the transmission channels and disassemble the Rx signals into the

single bistatic paths from each Tx to each Rx element.

It follows the stage of signal processing opening the possibility for adaptive or not adaptive

beamforming not only for the receiver but also for the transmitter. Within the subaperture beam

e.g. narrow Tx-search beams can be formed or even multi-target tracking may be implemented

- everything within the processor. Also for non-orthogonal codes the matrix A can serve as

a model for excitation. For instance, pure phased array operation is obtained with columns

identical up to scalar factors effecting Tx-beamforming. To cover the same angular sector as for

the pure MIMO operation, the look direction has to be changed N times during the given time

interval according to the transmit beam which is N times as narrow as the subaperture beam.

By modifications of the matrix A it is also possible to combine subapertures and to perform

MIMO with a smaller number of independent phase centers.

Thus the number of degrees of freedom is considerably increased due to the matrix stimulation.

Nevertheless, the ’best choice’ is depending on the situation, from the signal power, the distri-

bution of clutter, the task (search, tracking) and of the number of illuminated targets. Moreover,

what is the criterion to judge the performance? The signal-to-clutter-plus-noise ratio (SCNR)?

The Fisher-information for parameter estimation? Other information measures as the informa-

tion gain? ...

We can establish on the actuator side a dictionary of different waveform-ensembles A1, . . .AK



as a ’toolbox’, see Fig. 6. It is the task of the decider to choose one of these ensembles for the

next measurements.
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Figure 6: Perception-action cycle for phased array MIMO operation with a dictionary of modes

The decision depends on a state vector S from the perception side, which is built from measure-

ments and stored information. If the system is e.g. in a tracking mode, the prediction of target

parameters is an important source for the selection of an excitation matrix. The latter is e.g. a

’clutter-covariance map’ gathered before or from former explorations of the same scene. On the

perception side, there also may be a dictionary of typical scene properties to which the actual

measurements are compared to find out the best fitting model.

For each of the K elements of the waveform dictionary, reward maps Pqk, q = 1, . . . , Q, k =

1, . . . K according to the actual knowledge of the clutter covariance matrix distribution have to

be calculated according to Q different performance measures, see Fig. 7. In our example the

reward measures are evaluated in the direction - velocity plane. Depending on the task to be

fulfilled (search, tracking, ...) a weighting is applied to the performance measures which are

combined in a single accumulated reward map P1, . . . ,PK per waveform. For each waveform

this is integrated according to a certain a priori probability distribution p over this parameter

plane. For tracking the latter can be based on the predicted state pdf, for search it will be a

priority weighting. The result is the reward of the individual waveforms. Taking that waveform

providing the maximum reward for the predicted state, the actuator i.e. the waveform generator

will use this as the last step of ’cognitive MIMO radar’. Moreover, if the state transition dynam-

ics are known, this ’greedy’ decision policy can be further improved by the application of MDP

(or POMDP) based approaches as described in chapter 3.



Joint reward map P1

Reward map P11

Reward map PQ1

................

Prior distribution p

Mode A1 Mode AK

Accumulated Rewards

From tracker

Max determines
selected mode

W
eig

h
ts

PK

P1K

PQK

....

.

.

.

.

.

.

.

.

.

.

.
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6. Outlook

Surely Simon Haykin’s prophesies will become true up to a certain degree and cognition pro-

vides a basis for a new generation of radar systems with reliable and accurate capabilities which

are still beyond the reach of traditional radar systems1. But - in our evaluation - the science of

cognitive radar is still at the first beginning. Much time will be necessary to further develop

the promising first approaches. Among the endless possibilities we have to find out those able

to be realized with today’s means and prove to attain considerable increase of performance in

practise.
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Abstract: The paper looks – chronologically spoken – back to the 90s of the last century, when the 
foundations were laid for a naval radar later to become the world market leader in the segment of 
small ship, air and sea target Surveillance and Target Acquisition Radar (STAR), named TRS-3D, 
developed and built by the former predecessor of Airbus Defence and Space, the TST Deutsche 
Aerospace. TRS-3D comprises a passive phased array antenna controlling its beam electronically in 
elevation and rotating electro-mechanically 360° in azimuth. At the beginning of the new century, the 
state of the art next generation TRS-4D emerged with four Active Electronically Scanned Array 
(AESA) apertures installed in a fixed way, two of them – now spatially spoken – covering fore and two 
of them covering aft of the ship, thus yielding an instantaneous full awareness around the platform. 
Additionally there is also a lower cost, rotating version of the TRS-4D, incorporating AESA 
capability. The paper finally gives a brief outlook on future developments of naval radar that can be 
expected.  

1. A Look Back

Over a period of nearly 20 years, the TRS-3D family of radar variants grew from a launching 
contract with the Royal Danish Navy to become the world market leader in the segment of 
small ship air and sea target Surveillance and Target Acquisition Radar (STAR), now having 
sold more than 60 systems worldwide and with a robust future ahead. 

In the 1980s, the Danish Navy developed a new type of multi-purpose ship the size of a 
corvette, called the Stanflex-300 (SF-300) class. It has a length of 50 m, a quite low 
displacement of 450 t, and a maximum speed of about 30 knots (Fig. 1). The small platform 
size called for a compact radar with an extremely lightweight antenna. 

In 1989 the Danish authorities issued a request for proposal for a multi-function radar for this 
platform with demanding requirements. TST Deutsche Aerospace proposed a 3D C-band 
Radar System capable of selecting different scanning patterns and modes of operation 
according to the immediate operational needs of the platform, quite a revolution at the time 
and seen mainly in then state of the art airborne radars. 



Figure 1.  Royal Danish Navy SF-300 with TRS-3D/16 on the mast-head 

These modes included: 
• A self-defence mode, combining short-range and high elevation scans with long-range

scan-sectors within one antenna rotation period, for use in a rain, sea and ground clutter 
environment with a rotation time of 2 s 

• A clutter mode for use in severe clutter conditions with a rotation time of 3.5 s

• A surveillance mode with 92 km instrumented range with a rotation time of 6 s

• A long range mode for use in ducting conditions, with 180 km instrumented range and a
rotation time of 6 s

TRS-3D/16 is a fully coherent pulse-Doppler system, with simultaneous, complementary 
receiving and processing channels for ground targets, sea targets as well as for jammer 
detection and coherent sidelobe cancellation. The antenna utilises the same type of array as in 
the ground-based surveillance radar TRMS, but with a much smaller vertical aperture because 
only 16 rows are used. Operationally, the same flexibility in the use of different scanning 
patterns, polarisation agility, frequency and code agility is provided. The antenna for Coherent 
SideLobe Cancellation (CSLC) is integrated in the radar phased array. A planar IFF antenna 
with SLB is integrated below the radar antenna and below that, there is an additional antenna 
for a separate navigation X-band radar. The antenna group rotates mechanically in azimuth 
while the electronic elevation scan is performed, and is mounted on an electro-mechanically 
stabilized platform which compensates for pitch and roll movements (Fig. 2). The radar is 
capable of supporting Harpoon and NATO Sea Sparrow operations. 
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birds, ground traffic, windmills and so forth. Of course, false alarms and false tracks should 
be kept to a minimum, but for suddenly appearing threat targets the critical time between first 
detection and the launch of a life-saving defence weapon has to be as short as possible. 

On the other hand, the shrinking budgets of many navies are leading to a reduced number of 
warships and downsized crews. To make things even worse, the experience and skills of the 
crews are often decreasing too, so operation and maintenance of a modern, but at the same 
time high performance, naval surveillance radar has to be as simple as possible. 

To address all these needs, CASSIDIAN (now Airbus Defence & Space) started the 
development of a new product family in addition to the well-known TRS-3D. As a 
prerequisite some new technologies had to be available. 

GaN Technology: Compared to GaAs technology, the power level of GaN devices are 5 to 
10 times higher and higher operating voltages can be used. This enables effective power 
amplification and TWTs can be cost-effectively replaced by solid-state transmitter amplifiers, 
in terms of acquisition cost but even more so in terms of life cycle cost. 

AESA Technology and Digital Beam Forming (DBF): Active Electronically Scanned 
Arrays consist of many transmit and receive or combined Transmit/Receive Modules. Since 
the output phase and amplitude of each module can be controlled individually, beam steering 
in both dimensions (azimuth and elevation) can be done electronically nearly without any 
time lag. Digital beam forming, today possible due to the high processing power of state-of-
the-art FPGAs, allows generation of the sophisticated receive beam patterns required to fulfil 
the different and partially conflicting requirements of a state of the art naval multi-function 
radar. 

The use of these new technologies has enabled the implementation of some of the key features 
of the TRS-4D: 

Multiple Beams on Receive, covering the complete elevation range, are digitally generated 
and processed in parallel (Fig. 4). In this way, the high dwell times are achieved which are 
necessary for accurate Doppler processing and very accurate elevation estimation. In addition, 
the receive beams can be stabilised electronically to compensate for the pitch and roll of the 
ship. 

Figure 4.   Multiple Beams on Receive 


