

Inhaltsverzeichnis

Danksagung	v
Abbildungsverzeichnis	х
Tabellenverzeichnis	xvii
Abkürzungsverzeichnis	xiii
Symbolverzeichnis	xiii
Abstract	viii
Kurzfassung	xxx
Kapitel	
I. Einleitung \ldots	1
1.1 Zielsetzung und Problemstellung	2
II. Grundlagen	4
2.1 Chromatographische Grundbegriffe	4
2.1.1 Definition allgemeiner Kenngrößen	4
2.1.2 Theoretische Bodenzahl	4
2.1.3 Peakauflösung	5
2.1.4 In der Flüssigchromatographie verwendete mobile und sta-	
tionäre Phasen	6
2.1.5 Peakverbreiterung in der Flüssigchromatographie	7
2.2 Präparative anulare Chromatographie	8
2.2.1 Übertragung des anularen Prinzips auf die Elektrochroma-	-
tographie	9
2.3 Elektrochromatographie	10
2.3.1 Elektrostatische Doppelschicht (EDL)	10
2.3.2 Elektroosmotische Strömung (EOF)	13
2.3.3 Elektrochromatographische Trennmechanismen	20
2.3.4 Joulesche Wärme in der Elektrochromatographie	21
2.3.5 Elektrische Leitfähigkeit im Hochspannungsfeld	25
2.3.6 Einfluss monolithischer Phasen auf die Elektrochromatogra-	
phie	26
2.3.7 Einfluss von pH-Wert und Ionenstärke des Eluenten auf den	
sich ausbildenden Elektroosmotische Strömung (EOF)	27
2.3.8 Ionenmigration der mobilen Phase	28
III. Experimentelle Ergebnisse	33

3.1	EOF un 3.1.1	d Trenneffizienz in der Kapillarelektrochromatographie Einflüsse unterschiedlicher Eluentparameter auf EOF und	33		
		Trennparameter	33		
	3.1.2	Charakterisierung von unterschiedlichen stationären Phasen	35		
3.2	Untersu	chung der Hydrodynamik im präparativen elektrokinetischen			
0.2	Trennap	parat	38		
	3.2.1	Experimentell ermittelte Hydrodynamik im planaren Test-	00		
	0.2.1	system	39		
	3.2.2	Einfluss unterschiedlicher Eluenten auf die Hydrodynamik	42		
	323	Hydrodynamik in der anularen Geometrie	45		
3.3	Joulesch	e Erwärmung im präparativen Trennapparat	51		
0.0	331	Planare Testzelle	51		
	3.3.2	Messtechnisch ermittelte Stromstärke im Zusammenhang mit	01		
	0.0.2	der Jouleschen Wärme	54		
	333	Lokale Temperaturverteilung in der planaren Testzelle und	01		
	0.0.0	im anularen Elektrochromatograph	55		
	334	Vergleich der stationären Temperaturausbildung zwischen	00		
	0.0.1	planarem und anularem System	56		
3.4	Untersu	chung der Elektromigration jonischer Komponenten der mo-	50		
0.4	bilon Ph	ase im Dauerbetrieb	57		
	3 4 1	Citrat/MeOH 1.29	58		
	3.4.1	$TRIS/M_{\Theta} \cap H 1.29$	62		
	3.4.2	$H_{a}\Omega/M_{e}\Omega H 1.29$	65		
	3.4.0	Zusammenhang der Jouleschen Erwärmung und der Jonen	00		
	0.4.4	migration in der Leitfähigkeitsmesszelle	66		
	3.4.5	Übertragung der Beobachtungen auf den kontinuierlichen	00		
0 F	D "	Trennapparat	67		
3.5	Prapara 3.5.1	Vergleich der Trennergebnisse zwischen planarer Testzelle	68		
		und analytischem Elektrochromatographen	68		
	3.5.2	Kontinuierliche präparative Trennung und Fraktionierung			
		einer Testmischung im anularen Prototypen	70		
IV. Mode	llierung ron Tost	von Hydrodynamik und Wärmeentwicklung in der zelle und dem anularen Elektrochromatographen	74		
plana		zene und dem andraren Elektroemonatographen	11		
4.1	Erfassur	ng der relevanten Stoffdaten	74		
V. Ergeb	onisse un	d Validierung der CFD Modellierung	78		
5.1	Zur Sim	ulation verwendete Gleichungssysteme	78		
0.1	5.1.1	Hydrodynamik	78		
	5.1.2	Joulesche Wärme	80		
	5.1.3	Implementierung des Massentransportes und der lokalen Leit-	00		
	0.1.0	fähigkeit in openFOAM	82		
5.2	Validier	ung der CFD-Modellierung mittels analytischer Kapillarelek-	04		
0.2	trochromatographie				
	5.2.1	Für das Kapillarmodell gewählte Randbedingungen	85		
	5.2.2	Vergleich der EOF Geschwindigkeiten	87		

	5.3	5.2.3 Simulation 5.3.1 5.2.2	Vergleich der Jouleschen Erwärmung zwischen Fluent und openFOAM	89 92 92 94
	5.4	5.3.2 Simulation nenmigra 5.4.1 5.4.2	Simulationsergeonisse der planaren Testzene	94 101 101
			FOAM Modells	102
VI. Z	usan	nmenfass	sung und Ausblick	122
	6.1 6.2	Zusamm Ausblick	enfassung	122 125
Anhang.				137
0	A.1	Analytis	che Kapillarelektrochromatographie (CEC)	138
	A.2	Planare	Testzelle	139
		A.2.1	Bestimmung der Hydrodynamik mittels Bildanalyse	140
		A.2.2	Thermographie zur Quantifizierung der freiwerdenden Joule-	
			schen Wärme	142
		A.2.3	UV-Vis Spektroskopie	146
	A.3	Anulare	Geometrie	147
		A.3.1	Bestimmung der Hydrodynamik und Joulesche Erwärmung	149
		A.3.2	UV-Vis online Detektion im anularen Spalt	150
		A.3.3	Messzelle zur Bestimmung von Leitfähigkeitsgradienten $\ .$.	151
		A.3.4	Leitfähigkeitskalibrierung	152
		A.3.5	Bestimmung der Natriumionenkonzentration in der Puffer-	
			lösung	152
		A.3.6	Analytische Bestimmung der Chloridionen- und Citratio-	
			nenkonzentration	153
	A.4	Chemika	lien und Materialien	154
		A.4.1	Eluenten und Pufferherstellung	154
		A.4.2	TRIS-Puffer	154
		A.4.3	Verwendete Analyte	155
		A.4.4	In-Situ Herstellung einer Silica-basierten monolithischen sta-	150
	A ==	Б .	tionaren Phase mit C8 Funktionalisierung	156
	A.5	Experim		157
		A.5.1	Referenzkapillaren fur die Kalibrierung der bildanalytischen	
			Auswertung zur Bestimmung der Hydrodynamik in der pla-	157
		1 5 9	Taballanwarta zu Kanital 2.1.1 und 2.1.2	157
		A.0.Z A 5 2	Tabellenwerte zu Kapitel 2.9	100 160
		Δ.5.4	Tabellenwerte zu Kapitel 2.2	164
		A 5 5	Tabellenwerte zu Kapitel 3.4	166
		A 5.6	Ergänzende Ergebnisse der zeitabhängigen Volumenstrom	100
		11.0.0	analyse hei Verwendung eines basischen Puffersystems	171
		A 5 7	Ergänzende Ergebnisse zur Hydrodynamik im planaren Sys-	1 I I
		11.0.1	tem unter verwendung eines sauren Puffersystems	172
			vom anvor vor von aung onnos sauron i anorsystems	±14

	A.5.8	Mittels (CEC) erzeugte Elektrochromatogramme, zur Ana- lyse der gesammelten Einzelfraktionen aus dem anularen			
		Trennversuch	173		
B.1	Simulati	on	174		
	B.1.1	Kapillare	174		
	B.1.2	Planare Geometrie	175		
	B.1.3	Berechnung des Wärmeübergangskoeffizienten im planaren			
		Modell	177		
	B.1.4	Anulare Geometrie	178		
	B.1.5	Berechnung des Wärmeübergangskoeffizienten im anularen			
		Modell	180		
	B.1.6	Computational fluid dynamics (CFD)	180		
	B.1.7	Netzunabhängigkeitsstudie	180		
B.2	Stoffdate	toffdaten und Strömungsgeschwindigkeiten der Kapillar-Messungen			
B.3	3 Für die Simulationsmodelle ermittelte Zeta-Potenziale und Strömungs-				
	geschwin	digkeiten	184		
	B.3.1	Tabellenwerte zu Kapitel 5.2.2	185		
	B.3.2	Tabellenwerte zu Kapitel 5.2.3	187		
	B.3.3	Tabellenwerte zu Kapitel 5.3.2	189		
	B.3.4	Tabellenwerte zu Kapitel 5.4.2	192		