
1
Introduction

R
EAL-world problems, such as the optimization of production processes of companies,

often require a decision-making w.r.t. different conflicting objectives and predefined

framework conditions. These conditions can be caused by physical characteristics of

manufactured products or arise in the context of a production site environment. In busi-

ness reality, practical problems are often handled by long-established experts based on

their experience and knowledge of required performance and quality. Unfortunately, if

the practical problems are quite complex even with this information it will prove difficult

to find satisfactory practical solutions. In this case the decision-maker will be grateful to

receive helpful support and advices by scientific knowledge. In the realm of mathemat-

ical optimization, one such decision-making process is known as scheduling. Applying

scheduling and combinatorial optimization in industry frequently results in cost savings

for the company. On the other hand, some practical applications are founded on theoreti-

cal problems which may in turn be relevant in the field of mathematical optimization.

This thesis is concerned with scheduling problems that arise in the practical problem of

rail car maintenance. In reality, rail cars are serviced in regular time intervals in service

halls of a maintenance company. Depending on the degree of wear, different types of nec-

essary maintenance steps need to be performed one after another and without interruption

in a predefined technological order for each rail car. A typical service hall contains sev-

eral parallel rail tracks, each of which is equipped with several machines performing the

same type of maintenance step. However, in some service halls there exists only a single

gate for each rail track and a dead end at the opposite side of this gate. Consequently, the

maintenance operator has to devise a schedule s.t. each rail car can be routed along the

tracks whenever one of its maintenance steps is finished, avoiding collisions with other

currently serviced rail cars, until the maintenance work for all rail cars is finished.

Motivated by this application we introduce a new type of job characteristic to the world

of scheduling in the first part of this thesis, and investigate its impact on already known

scheduling problems. In the second part of this thesis we further consider a particular

three-dimensional strip packing problem. The connection between both problems and

hence both parts of this thesis is due to the fact that they are based on the same type of

restriction.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Introduction

Outline of the Thesis. As previously said, this thesis is mainly divided into two parts, a
first part that is dedicated to scheduling and a second strip packing part. At the begin-

ning of each part we provide a brief overview of its contents. However, in Chapter 2 we

start with summarizing basic notation and definitions, and moreover provide a theoreti-

cal foundation needed for understanding both parts. In particular, we introduce the term

nested intervals that is the essential requirement for the central mathematical problems

considered in this thesis. Moreover, we also present graph classes as well as some com-

binatorial optimization problems together with known results and basic notions for these

problems that are relevant in this thesis.

Chapter 3 is devoted to scheduling. We first briefly introduce the framework and nota-

tion used within this chapter. Based on the motivating application in rail car maintenance,

we explicitly formulate the new resulting scheduling problems, namely two variants of

a flexible job shop with work centers and nested time intervals of jobs as well as the

makespan objective. The following section of this chapter is dedicated to classifying the

computational complexity of both variants. BesideNP-hardness results for both schedul-
ing variants we further present an approximation algorithm for one variant restricted to

a single work center, i. e. to a parallel machine environment. Afterwards, we introduce

a linear MIP model formulation for the flexible job shop variants and list some lower

bounds for the minimum makespan. For generating feasible schedules we present two

heuristical approaches, namely a greedy method as well as a shifting bottleneck heuristi-

cal method. In addition, we also deal with an exact branch&bound approach that is based

on an activity network tailored to the scheduling problems considered in this section.

For all approaches of this section, we finally discuss computational results for input data

associated with the application in rail car maintenance. At the end of this chapter, we

further consider the alternative objective of minimizing the total completion time instead

of makespan minimization as brief excursion.

In chapter 4, we transfer the new type of restriction that is based on nested intervals

and initially formulated for scheduling problems in the preceding chapter to strip pack-

ing problems. Instead of considering time intervals associated with jobs, in this chapter

intervals are used in the context of the positioning of boxes. The resulting problem is

a strip packing problem on comparability graphs of an arborescence order. In the first

section, we start with an introduction to the framework of standard strip packing prob-

lems and introduce notation used in the remainder of this chapter. In the second section

of this chapter, we finally consider strip packing problems that are based on compara-

bility graphs of an arborescence order and introduce two mathematical formulations that

are transferred from both formulations introduced for standard packing problems before.

Moreover, we also include gravity constraints, present a preprocessing method, an MIP

model formulation as well as a heuristical method for strip packing problems on com-

parability graphs of an arborescence order. Finally, we discuss computational results for

these methods.

Acknowledgements. Without the support and encouragement of many people this thesis
would not have been completed. It is my inner need to express my sincere gratitude

to these persons in the following. First of all, I would like to thank my supervisor Uwe

Zimmermann for giving me the chance to become a member of MO at TU Braunschweig,

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

3

for your confidence and patience in me, giving me freedom in my research interests, and

for providing me constructive and helpful support throughout the process of writing up

this thesis. I finally made it. Furthermore, many thanks to Sigrid Knust who instantly

agreed to be co-referee for this thesis. I would like to thank my colleagues Andreas

Tillmann and Frederik Fiand for motivating and valuable discussions in the context of

this thesis and for your support in the field of teaching at TU. Many thanks to Silke

Thiel for your never ending intention of creating a pleasant working environment. An

extra special thank goes to Ronny Hansmann for giving me lots of essential advice in the

context of this thesis and scientific work in general and, again, to Andreas Tillmann for

untiring support in the finalization process of this thesis. Last but not least and from the

bottom of my heart, I would like to express my heartfelt thanks to my family. Thanks for

your support and for always motivating me.

And finally, thank you for reading this thesis.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2
Preliminaries

I
N this chapter, we briefly introduce the framework, definitions and notation of the fields

Complexity Theory, Graph Theory and Discrete Optimization that are relevant in the

remainder of this thesis. For an easier reading, we postpone definitions and notation that

are only regarded either in the context of scheduling or packing problems to the respective

beginning of Chapters 3 and 4 of this thesis. However, we already introduce a general

definition of the term nested intervals in Subsection 2.3 that is overall connecting both

parts of this thesis.

For further reading, we refer to the well-known literature of Garey & Johnson (1979)

for Complexity Theory, to Brandstädt et al. (1999) and particularly to Golumbic (2004) –

that is also highly relevant for chapter 4 of this thesis – for the field of Graph Theory and

finally to Schrijver (2003) and Korte & Vygen (2012) for Discrete Optimization.

2.1 Mathematical Problems and Their Complexity

A mathematical problem P is described by all of its instances I ∈P. We distinguish
between two types of problems, namely decision problems and optimization problems.

In a decision problem a question that only allows a ”yes” or a ”no” answer is asked w.r.t.
a regarded instance I used for specifying the problem. We say that an algorithm solves
such a decision problem P if it answers the question for every I ∈P, i. e. if it always
finds the correct one of both possible outcomes. In contrast to this, an instance of an

optimization problem is fully described by a solution space X , that is, a set of solutions of
problem P, and an objective function f ∶ X → that associates a weight f (x) with each
solution x ∈ X . Based on the objective function f , optimization problems are commonly
divided into the classes of minimization problems and maximization problems, depending
on whether function f has to be minimized or to be maximized. Consequently, the pos-
sible outcomes of an algorithm that solves a minimization problem P are infeasibility if
X = ∅, unboundedness if for every r ∈ there is some x ∈ X s.t. f (x) < r , or an optimal
solution x∗ ∈ X with optimal objective value f (x∗) =minx∈X f (x) for each instance I ∈P.
Analogously, we may also define algorithms that solve maximization problems.

Even though we distinguish between decision problems and optimization problems at

the beginning of this subsection, there is an important dependence between both kinds

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6 Preliminaries

of problems that is also used in later methods. In particular, we may define a threshold

k ∈ for the objective function of a minimization problem and formulate an associated

decision problem:

Does there exist an x ∈ X satisfying f (x) ≤ k?

One of the most important issues of Complexity Theory is to measure the performance

of an algorithm developed for solving a problem w.r.t. its time complexity. Since this

time also depends on external factors like CPU-power etc. we are interested in a measure

that is strictly based on the input instance I of a problem. More precisely, for each input
instance I of a problem P we define the input length ∣I∣ = n as length that is used by
some encoding to store the data defining instance I. The time complexity of an algorithm
for solving a problem P is O(g(∣I∣)), if k ⋅g(I) is an upper bound on the total number
of steps (performed elementary operations) the algorithm needs at most for solving any

input instance I of a problem P for fixed input length ∣I∣, and some function g ∶ →
as well as a constant k ∈ . Clearly, when asking for the time complexity of an algorithm

we are only interested in the tightest estimation, that is, the smallest upper bound.

In particular, an algorithm solves a problem in polynomial time if the time complexity
of the algorithm can be bounded by a polynomial p(∣I∣), i. e. if the time complexity
is O(∣I∣k) for some constant k ∈ . If there exists an algorithm that solves a decision

problem P in polynomial time then P is denoted as polynomially solvable problem. The
class of all polynomially solvable problems is denoted by P .
However, the notion polynomially solvable problems depends on the encoding of the

input, and we assume that the numerical input data is binary encoded. For example, if

an algorithm has time complexity ∑
n
j=1wj for some given numeric input data w1, . . . ,wn

then the algorithm is not polynomially bounded from above. In fact, based on a binary

encoding, in this case the time complexity is an exponentially growing function of the

length of an input string. An algorithm is called pseudopolynomial if its time complexity
is polynomial in the numeric value of the input, but possibly exponential in the length of

the input.

In the following, we introduce another class of decision problems that is denoted

by NP . For problems P contained in this class, we do not call for the existence of a

polynomial-time algorithm for solving P, but we require that for each yes-instance there
is a certificate which can be checked in polynomial time. A binary string C of length poly-
nomially bounded in the size of the instance I is called yes certificate for I if it clarifies
that the answer for instance I is ”yes”. Consequently, a decision problem is contained in

the class NP if there is a certificate-checking algorithm which, for given instance I and
string C, answers in polynomial time in the size of I whether C is a yes certificate for I.
For both complexity classes P , NP it is easily seen that P ⊆ NP . However, it is cur-

rently not known if there exists a decision problem in NP which is definitely not solvable

in polynomial time, and hence not contained in P . Proving P ≠NP , or otherwise P =NP ,
would answer one of the probably most interesting open question in mathematical opti-

mization.

A decision problemP1 is said to be polynomially (Karp-) reducible to another decision
problem P2, if there exists a polynomial-time algorithm which constructs an instance I2

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Algorithms and Methods for Solving Problems 7

of P2 for every instance I1 of P1 s.t. I1 has ”yes”-answer if and only if I2 has a ”yes”-
answer. In this case, we also write P1 ∝P2. We say that a decision problem P1 is NP-
hard if P2 ∝P1 for every decision problem P2 contained in class NP . If additionally
P1 ∈ NP then decision problem P1 is said to be NP-complete. In order to prove that a
decision problem P1 is contained in class P it is sufficient to verify P1 ∝P2 for some

P2 ∈ P . On the other hand, we can prove that a decision problem P1 is NP-complete by
proving that both P1 belongs to NP as well as P2 ∝P1 for some NP-complete decision
problem P2. Consequently, if some NP-complete decision problem would be proven to

be solvable in polynomial time, then this would imply P =NP .
Based on the existence of a pseudopolynomial algorithm we further classify NP-com-

plete problems. More precisely, an NP-complete problem for which a pseudopolynomial

algorithm exists is said to be weakly NP-complete. If, in contrast, it is proven that a
pseudopolynomial algorithm cannot exist for an NP-complete problem unless P = NP
then we speak of a strongly NP-complete problem.
The preceding concept for classifying decision problems can also be carried over to

optimization problems. More precisely, an optimization problemP is said to beNP-hard
if it is associated with an NP-hard decision problem as described at the beginning of

this subsection. If the corresponding decision problem is weakly NP-complete then the
optimization problem is an NP-hard problem in the weak sense, or analogously strongly
NP-hard if the decision problem is strongly NP-complete.

Many combinatorial optimization problems can be formulated by the following pro-
gram in canonical form

max{ f (x) ∣ Ax ≤ b, x ≥ 0, x ∈ nI
0 × n−nI}

where A ∈ m×n, b ∈ m, nI ∈ {0,1, . . . ,n} corresponds to the total number of integer vari-
ables of the program, and f (x) is the objective function that only depends on variables
x ∈ nI

0 × n−nI as well as on constants c ∈ n.

If f is a linear function we also write f (x) = cTx and consider the following types of
programs. If nI = 0 then the program contains only continuous variables x and is therefore
also denoted as LINEAR PROGRAM (LP). Conversely, for nI = n each variable is integer-
valued and the program is said to be an INTEGER (LINEAR) PROGRAM (IP). For all

nI ∈ {1, . . . ,n−1} the program contains nI integer variables as well as n−nI continuous
variables and is denoted as MIXED INTEGER (LINEAR) PROGRAMM (MIP).

Otherwise, if f is amultilinear function that can be written as f (x) =∑I⊆{1,...,n} cI ∏i∈I xi
and if further nI = 0 then we speak of a MULTILINEAR PROGRAMM (MLP).

2.2 Algorithms and Methods for Solving Problems

For a wide variety of combinatorial optimization problems it is not difficult to construct

an algorithm that generates some feasible solution of the problem in a relatively small

amount of time. Such an algorithm that ensures a solution of the problem is determined

when the algorithm terminates is denoted as heuristical method. However, the objective
value of the resulting solution of a purely heuristical method may be far away from the

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

8 Preliminaries

optimal objective value of the problem. If we are moreover able to both guarantee that the

resulting solution is close to the optimal solution of the problem as well as a polynomial

time complexity of the algorithm then a heuristical method is particularly denoted as

approximation. In the following we will point out this definition more precisely.

Let A be a polynomial-time algorithm that constructs a feasible solution for every in-

stance I of a minimization problemP. Furthermore, let zA(I) denote the objective value
generated by algorithm A, and let z∗(I) be the optimal objective value for instance I.
Then A is an absolute approximation algorithm forP, if ∣zA(I)−z∗(I)∣ ≤ k is satisfied

for every instance I ∈P and some constant k ∈ +. Such an absolute approximation algo-

rithm is only known for a few NP-hard minimization problems which leads us to the fol-
lowing definition of an approximation algorithm w.r.t. its relative performance guarantee.

For this purpose, we restrict to instances with non-negative optimal objective value z∗(I).
A polynomial-time algorithm A is said to be a approximation algorithm with approx-

imative ratio a(∣I∣), if zA(I) ≤ a(∣I∣) ⋅ z∗(I) is satisfied for every instance I ∈P, where
a ∶ → +. If the performance ratio a(∣I∣) is given by a constant function then we par-
ticularly speak of a constant factor approximation algorithm. If A is an approximation
algorithm for a problemP then in this thesis we also say thatA approximatively solvesP.

If we are interested in actually finding an optimal solution of a combinatorial optimiza-

tion problem then we need so-called exact methods. A quite intuitive exact method for

solving a minimization problem may be described as follows.

Based on the relation between a minimization problem P and its associated decision

problem as stated at the beginning of this section we are able to formulate a search proce-

dure for solving an instance I of problem P. In particular, if the optimal objective value
z∗(I) can be bounded by some values z1l ,z

1
u ∈ in advance s.t. z1l ≤ z

∗(I) ≤ z1u then a bi-
nary search procedure localizes the position of z∗(I) as follows. It consecutively solves
an associated decision problem for threshold z̃ ∶= (ztu−ztl)/2 in iteration t, and updates the
currently known best bounds on z∗(I) depending on the outcome of the decision prob-
lem, that is, either zt+1l ∶= z̃,zt+1u ∶= ztu or otherwise zt+1l ∶= ztl,z

t+1
u ∶= z̃. If z∗(I) ∈ then the

total number of iterations of the procedure is hence bounded by O(log(z1u − z1l)). Con-
sequently, the time complexity of the resulting binary search algorithm heavily depends

on the computational complexity of the decision problems that need to be solved within

each iteration of the procedure.

An alternative approach, that is probably the most famous exact solution method in the

mathematical optimization community, is the so-called branch&bound method. Since
this approach is very popular we confine ourselves to briefly introduce the essential in-

gredients of this procedure applied to an instance I of a minimization problem P with

set of feasible solutions X . As its name implies a branch&bound method is based on two
main tools, namely a branching procedure as well as a bounding procedure.

Given a subset X̃ ⊆X a branching procedure returns two or more strict subsets X1,X2, . . .
of X̃ s.t. the union of all of these subsets covers X̃ . A recursive application of this proce-
dure – starting with set X – defines a search tree that is also denoted as branch&bound
tree where each subset is associated with a (branch&bound) node. In the remainder of
this thesis, each of these nodes is also said to be a subproblem of the initial problem as-

sociated with the root node in this tree. If the branching procedure particularly defines

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

Nested Intervals and Relations 9

subsets by fixing variables of an associated program then the selection of these variables

is denoted as branching policy. If the selection of the variables of a branching policy
moreover only depends on a predefined rule then this rule is said to be the branching rule
of the method. The above-described branching procedure is linked with a so-called node
(subproblem) selection policy that decides which node is chosen next for branching.
In the second basic tool of this method, the bounding procedure, we compute bounds

on min{ f (x) ∣ x ∈ X̃}, i. e. on the minimum objective value over a subset X̃ associated with
a subproblem. Usually, an upper bound for a subproblem is generated by fast heuristical

methods, e.g. a greedy heuristical method, whereas the lower bound is calculated by

relaxing some constraints and/or a subset of integer variables of a program formulated

for the subproblem. If all integer variables are relaxed then we particularly speak of a

branch&bound method that is based on LP-relaxations. The key idea of branch&bound
method is that a subproblem whose lower bound is at least as large as the objective value

of the currently best found feasible solution, then the subproblem may be discarded from

the branch&bound tree. This step is called pruning. Obviously, such a subproblem does

not contain any feasible solution with objective value strictly smaller than the one of the

currently best found feasible solution.

The efficiency of a branch&bound method strongly depends on the interaction of both

described main tools. For instance, if the lower bounds computed for the subproblems are

quite weak then the branch&bound tree increases in size. On the other hand, a relative

high computation time for generating bounds overall increases the total computation time

of the method.

2.3 Nested Intervals and Relations

An interval Ii, associated with some index i ∈ , is defined by a coordinate xi ∈ + and

a width wi ∈ + s.t. Ii = (xi,xi+wi). Let Ii, I j be a distinct pair of intervals (on the line)
given by coordinates xi,x j ∈ + and widths wi,wj ∈ +. Then Ii is said to be contained in
I j, denoted by Ii ⊆ I j, if x j ≤ xi and x j +wj ≥ xi+wi. If further Ii ≠ I j then Ii is said to be
strictly contained in I j, denoted by Ii ⊂ I j.
Furthermore, the pair of intervals is defined to be

• concurrent denoted by Ii ∥c I j,
if either Ii is contained in I j or alternatively I j is contained in Ii.

• subsequent,
if both intervals do not intersect, that is, if Ii∩I j = ∅.

• non-overlapping,
if Ii and I j are either concurrent or subsequent.

Accordingly, if I is a family of intervals, ∣I∣ ≥ 2, then we denote I as family of con-
current / subsequent intervals if Ii and I j are concurrent / subsequent for every pair of
distinct intervals Ii,I j ∈ I . Quite important in the context of this thesis, we define the

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

10 Preliminaries

more general family of nested intervals as follows. A family of intervals I is said to be
nested if every pair of distinct intervals Ii,I j ∈ I is non-overlapping.
Note that in the literature a family of nested intervals is sometimes defined equivalently

to our definition of a family of concurrent intervals. For instance in Fridy (2000) this

definition is used in the context of the so-called Nested Intervals Theorem. In this thesis,

however, each pair of intervals contained in a family of nested intervals is also allowed to

be subsequent.

More generally and not exclusively formulated for pairs of intervals, let S be a set and
let R ⊆ S×S be a binary relation on S. Then R is defined to be

(i) reflexive on S if (x,x) ∈R for all x ∈ S,

(ii) transitive on S if for each triple of elements x,y,z ∈ S:

(x,y) ∈R∧(y,z) ∈R⇒(x,z) ∈R,

(iii) antisymmetric on S if for all x,y ∈ S with (x,y),(y,x) ∈R we have x = y.

IfR satisfies (i)−(iii) for given set S thenR is defined as partial order of S and the pair
(S,R) as partially ordered set (poset).

2.4 Graphs, Relevant Graph Classes and Further Notions

Let V denote a finite set of vertices. A graph G is given by a pair G = (V,E) where
E ⊆V ×V denotes the set of edges of G. An edge e corresponds to a pair e = ei j = (vi,v j)
of vertices vi,v j ∈V , i≠ j. We say two vertices vi,v j ∈V are adjacent inG if there is an edge
e = (vi,v j) in E. Moreover, vertex vi ∈V / edge e ∈E is said to be incident to an edge e ∈E /
a vertex vi ∈V if e= ei j for some vertex v j ∈V . If the pair of vertices associated with edge e
is ordered we define e to be a directed edge. In this case, e is called arc in the remainder of
this thesis and denoted by ai j = (vi,v j) where indices i and j indicate the order of the pair
of vertices vi,v j. Otherwise, i. e. if e= (vi,v j) = (v j,vi) an edge is defined to be undirected.
If set E contains only edges we denote the graph to be undirected. Analogously, if a graph
contains only arcs we define the graph to be directed or equivalently as a digraph. In this
case, we denote the digraph byD= (V,A)where A is defined as the set of arcs ofD in order
to guarantee a separate notation of graphs and digraphs. A pair of graphs G1 = (V1,E1),
G2 = (V2,E2) / digraphsD1 = (V1,A1), D2 = (V2,A2) is said to be isomorphic if there exists
a bijective function f ∶V1→V2 s.t. (vi,v j) ∈E1 / (vi,v j) ∈A1 if and only if (v f (i),v f (j)) ∈E2
/ (v f (i),v f (j)) ∈ A2. In a directed / undirected multigraph more than one edge / arc may
exist for a single pair of vertices vi,v j ∈V . Moreover, a loop is defined by an edge / arc
(v,v), v ∈V . In this thesis, we do not consider multigraphs and loops either for graphs
or digraphs. If for a given graph G = (V,E) the set of vertices V is associated with some
weight given by a function w ∶ V → , we add w to the pair (V,E), that is, G is then

denoted by the triple G = (V,E,w). If otherwise each arc of a digraph is associated with
some weight given by a function w ∶ A→ then we also speak of a network N instead of
a weighted digraph and write N = (V,A,w).

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

