
1
Introduction

In everyday life, we are often confronted with online problems. Informally, this
means that we have to make decisions—often banal ones, but sometimes also ones
with significant impact—without knowing the future. Imagine, for example, you
are in the car, on the way into your long-awaited vacations; taking the fastest route,
you know it would be possible to reach your vacation destination within 8 hours—
if it were not for traffic. An hour ago, you decided to leave your planned route due
to a congested road ahead, just to find yourself in a bumper-to-bumper traffic jam
right after that. In the end, you arrive at your destination, totally exhausted, after a
12-hour drive. It seems that every time you made the decision to alter your planned
route or to stick to your current one, you made a bad choice. Being confronted with
choices, not knowing what consequences each possible decision will eventually
have, is a frustrating daily routine. There are various other examples for situations
in real life in which we are forced to make decisions without knowing the future;
ranging from rather insignificant ones, such as choosing appropriate clothing for
a hike without knowing how the weather is going to develop, to choices with a
great impact on our financial situation, such as deciding in which stock to invest.

Online computation is the field of computer science that deals with the formaliza-
tion of such online problems and the development and analysis of algorithms to
solve them. An algorithm that is supposed to solve some online problem receives
its input piecewise and has to choose how to proceed with each piece of the input
immediately, without any information about the future input and without the
possibility to revise its decisions. Such an algorithm is called an online algorithm.
The quality of an online algorithm A is traditionally measured in terms of its
competitive ratio, which relates the quality of the solutions computed by A to the
quality of the solutions computed by an optimal offline algorithm that knows the
whole input in advance. Since we desire algorithms that also perform reasonably

1Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

2 Chapter 1. Introduction

well when given a worst-case input, we usually assume that the input given to
the algorithm is chosen by a malicious adversary whose goal is to maximize the
algorithm’s competitive ratio, whereas the algorithm’s goal is to minimize it.

For many problems in real life, we sometimes wish we could get information
from some source of unlimited knowledge. We would like to know, for example,
which route will be least congested, or what stock is going to increase soon. And,
as a matter of fact, for all examples mentioned above, great efforts have been
made to be able to make predictions about the future; there are the weather
forecast, navigation systems with built-in algorithms for bypassing traffic jams,
and attempts to predict fluctuation in the stock market. In online computation, this
concept also exists, in the form of an omniscient oracle with unlimited computing
power and full knowledge about the input instance at hand. This oracle can
provide the online algorithm with advice bits to reveal crucial information about
the input instance and thus improve the quality of the solution computed by the
algorithm. The field of advice complexity theory deals with the question of how
many advice bits are necessary and sufficient to compute solutions of a certain
quality.

An especially interesting and challenging task is to prove lower bounds on
the number of advice bits. One tool has proven to be extremely helpful in this
regard, namely the string guessing problem. This problem is a very generic online
problem, maybe even the most generic online problem, and it can be discovered
in many other online problems. The input being an unknown string of length n,
an online algorithm for the string guessing problem is asked to guess this input
string, letter by letter. The task of the algorithm is to guess as many letters
correctly as possible. Although this problem is extremely elementary, even very
elaborate online problems can be interpreted in one way or the other as guessing
letters of an unknown input string. This circumstance can be exploited to specify
a reduction from the string guessing problem to a given online problem. The
concept of reductions is often applied in computer science to prove that some
given problem P is not easier to solve than another problem Q, transfering already
known hardness results for Q to hardness results for P. This thesis has a strong
focus on the string guessing problem, and on constructing reductions to obtain
lower bounds on the advice complexity of other online problems.

1.1 This Dissertation

The remainder of this chapter serves to introduce the mathematical foundations
that we will need throughout this thesis in a formal way. Apart from fixing some
mathematical concepts and notation in Section 1.2, we give formal descriptions of

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Mathematical Foundations 3

the concepts of online computation (Section 1.3), online compuation with advice
(Section 1.4), and the string guessing problem (Section 1.5).

Each of the following four chapters deals, in one way or the other, with the
string guessing problem and how it can be used to infer results concerning the
advice complexity of other online problems. Chapter 2 covers the k-server problem,
Chapter 3 the disjoint path allocation problem, and Chapter 4 addresses two related
problems, the graph exploration and the graph searching problem. In Chapter 5, we
introduce a more powerful adversary that is able to choose random bits, and
analyze the string guessing problem thoroughly in this new model. We show that,
also in this model, the string guessing problem can be used to transfer results for
this problem to other online problems.

Several problems analyzed in this dissertation have been proposed by or devel-
oped in collaboration with my colleagues. In particular, Juraj Hromkovič pointed
me to all problems that are investigated in this thesis. First ideas for the lower
bounds presented in Chapter 2 were developed during a workshop in Montserrat;
the technical details were developed autonomously afterwards. Most of the results
in Chapter 3 have been developed together with Heidi Gebauer, Dennis Komm,
Rastislav Královič, and Richard Královič, and those in Chapter 4 in collaboration
with Dennis Komm, Rastislav Královič, and Richard Královič. The model of the
probabilistic adversary from Chapter 5 has been proposed by Juraj Hromkovič; all
results and technical details therein were found and elaborated in independent
work by the current author.

1.2 Mathematical Foundations

In this section, we present a short overview of the most important mathematical
concepts and notation being used throughout this thesis. However, we broach
every subject only briefly, mainly to fix our notation. For a more general introduc-
tion to online algorithms, see the textbook of Borodin and El-Yaniv [BEY98]; the
concept of advice complexity is discussed in detail by Komm [Kom12].

1.2.1 Sets

A set is a collection of objects. These objects are called elements of the set and are
usually required to be pairwise distinct. We write, for example, {0, 1} for a set
containing the two elements 0 and 1. The cardinality or size of a set S is the number
of elements contained in S and denoted by |S|. The empty set is denoted by ∅. For
each set S, we denote by P(S) the power set of S, defined as

P(S) = {R | R ⊆ S}.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

4 Chapter 1. Introduction

Whenever the order in which the elements of a set are listed matters, we talk
about ordered sets. For ordered sets, we drop the requirement of all elements
being pairwise distinct and allow multiple occurrences of the same element. To
distinguish ordered sets from unordered ones, we use parentheses instead of
braces to denote the former; for example, we write (0, 1) instead of {0, 1}. An
ordered set is also called a sequence or a tuple. For sequences, often the term length
is used instead of size or cardinality. Tuples of size n are also called n-tuples;
furthermore, tuples of size 2 are called pairs.

Throughout this thesis, we use the standard notation for the ordered sets of
integers and real, rational, and natural numbers. For the set of real numbers, we
use the symbol R. We denote the set of rational numbers by Q and the set of integers
by Z. The set of natural numbers is denoted by N. We often need to constrain our
considerations to numbers that do not exceed or fall below a certain threshold.
In such cases, we sometimes add a superscript to the set symbol to indicate this
threshold. For example, in this notation, the set of negative real numbers can be
denoted by R<0, and we have N = Z≥0. Concerning the latter statement, though,
the literature is not completely consistent. Although in this thesis we usually
assume that 0 is included in the set of natural numbers, in some literature it is not
(hence, N = Z≥1). Therefore, whenever we are talking about N and want to make
completely clear whether 0 is to be included in our considerations or not, we also
make use of this superscript notation and write either N≥0 or N≥1.

1.2.2 Alphabets and Strings

An alphabet is a nonempty finite set of letters, and is usually denoted by Σ through-
out this thesis. Often we consider the binary alphabet Σ2 = {0, 1}. The letters 0 and 1

in Σ2 are called bits. A string over an alphabet Σ is a sequence r = (r1, . . . , rn) of
letters from Σ, for some natural number n ∈ N≥0, and if the letter ri is contained
in Σ2, for each i with 1 ≤ i ≤ n, we call r a binary string or bit string. If n = 0, we say
that r is the empty string, which we denote by ε. Instead of writing r = (r1, . . . , rn),
we also use r = r1 . . . rn as a shorthand notation. A string r ′ = r1 . . . rm with m ≤ n

is called a prefix of r. Comparably, a string r ′ = rm . . . rn with m ≥ 1 is called a
suffix of r.

1.2.3 Functions and Constants

For any subset S ′ of an ordered set S, we define the minimum of S ′, denoted
by min(S ′), to be an element x of S ′ such that x ≤ y for all elements y ∈ S ′;
analogously, we define the maximum of S ′, denoted by max(S ′), to be an element x
of S ′ such that x ≥ y for all elements y ∈ S ′.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Mathematical Foundations 5

0
0

0.5 1

1

α

η
(α

)

Figure 1.1. The binary entropy function η(α) = −α log(α) − (1− α) log(1− α). For our purposes,
α is only considered in the range 1/2 ≤ α < 1. Therefore, the other part of the graph is hatched.

For any real number x ∈ R, we use �x� to denote the largest integer y with y ≤ x

and call it the floor of x. Accordingly, 	x
 denotes the smallest integer y such
that y ≥ x and is called the ceiling of x.

For any two real numbers x ∈ R and y ∈ R>0 with y �= 1, we denote the logarithm
to base y of x by log

y
(x). In this thesis, logarithms are usually to base 2 if not stated

otherwise. Hence, usually we take a pass on mentioning the base explicitly and
just write log (x) instead of log

2
(x). If it does not introduce any ambiguity, we

also often omit the parentheses and write log x instead of log(x).
Furthermore, we will often encounter the so-called entropy, which is, originally,

a measure of the information content of a given string and plays a great role in the
field of coding theory (see, for example, Roth [Rot06]). For any real number p ∈ R

with 0 ≤ p ≤ 1 and every natural number q ∈ N≥2, the q-ary entropy function of p
is defined as

ηq(p) = p log
q
(q− 1) − p log

q
(p) − (1− p) log

q
(1− p),

where 0 log
q
(0) is assumed to be 0. For the binary entropy function, which is the

version we are usually considering, this yields

η2(p) = p log
2
(p) − (1− p) log

2
(1− p).

A plot of the binary entropy function is shown in Figure 1.1. As for logarithms,
we allow us to drop the subscript in the binary case and often write η(p) instead
of η2(p).

We follow the convention to give complexity measures in terms of orders of
magnitude. To this end, we use the Landau symbols to group functions into classes
according to their asymptotical growth. For any two functions f : N≥0 → R≥0 and
g : N≥0 → R≥0, we say that f does not grow asymptotically faster than g, denoted
by f(n) ∈ O(g(n)), if

∃ n0, c > 0, such that ∀ n ≥ n0 : f(n) ≤ c · g(n),

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

6 Chapter 1. Introduction

and we say that g grows asymptotically faster than f, denoted by f(n) ∈ o(g(n)),
if

lim
n→∞

f(n)

g(n)
= 0.

Moreover, we use the notations

f(n) ∈ Ω(g(n)) ⇐⇒ g(n) ∈ O(f(n)),

f(n) ∈ ω(g(n)) ⇐⇒ g(n) ∈ o(f(n)), and

f(n) ∈ Θ(g(n)) ⇐⇒ g(n) ∈ O(f(n)) ∩Ω(f(n)).

In some contexts, we will come across Euler’s number, a mathematical constant
that we denote by e and which can be approximated by e ≈ 2.718.

1.2.4 Combinatorics

The factorial of n, i. e., the product of all positive natural numbers from 1 to n,
is denoted by n!, for any natural number n ∈ N≥0, where 0! is assumed to be 1.
For natural numbers n, k ∈ N≥0, the binomial coefficient

(
n
k

)
indicates the number

of possibilities to choose k elements out of a set containing n elements; it can be
calculated as (

n

k

)
=

n!

k! · (n− k)!
.

1.2.5 Probability Theory

At some point in this thesis, we will add a certain random element to the game
between the online algorithm, the adversary, and the oracle. More precisely, we
will allow the adversary to “toss a coin” (if necessary several times) and choose
the instance given to the algorithm as its input depending on the outcome of
these coin tosses. Such random elements with an uncertain outcome are called
experiments, and each possible outcome is called an elementary event. The set S of
all elementary events of an experiment is the sample space, and an event is a subset
of the sample space and thus an element of the power set P(S) of S. In this thesis,
we only encounter discrete probabilistic models, in which the sample space is a
finite set. To assign a probability to each event, we use a function Pr : P(S) → [0, 1].
This function is called a probability distribution over S and has to fulfill the following
constraints.

(a) Pr({s}) ≥ 0 for every elementary event {s} ⊆ S,

(b) Pr(S) = 1, and

(c) Pr(A ∪ B) = Pr(A) + Pr(B) for all events A,B ⊆ S with A ∩ B = ∅.

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.2. Mathematical Foundations 7

The pair (S,Pr) forms a so-called probability space. If the function Pr is such that
each elementary event {s} ⊆ S occurs with the same probability, i. e., if

Pr({s}) =
1

|S|
for all {s} ⊆ S,

then Pr is called the uniform distribution.
A random variable in the probability space (S,Pr) is a function X : S → R assigning

a real number to every elementary event from the sample space. The probability
that the random variable X attains a certain exact value y is given by the probability
mass function fX : R → [0, 1], defined by

fX(y) = Pr(X = y) = Pr
({

{s} ⊆ S | X(s) = y
})

.

The probability mass function characterizes the probability distribution of X, which
is formalized by a function dX : R → [0, 1], defined as

dX(y) = Pr(X ≤ y) =
∑
z≤y
z∈DX

Pr(X = z),

where DX := {y ∈ R | ∃ s ∈ S such that X(s) = y} is the co-domain of X. For a
discrete probability space (S,Pr) and a random variable X in (S,Pr), the expected
value of X is defined as

E[X] =
∑
y∈DX

y · Pr(X = y).

A detailed introduction to randomized computation and probability theory is
given by, e. g., Hromkovič [Hro05].

1.2.6 Graphs

In every one of the subsequent chapters, we will deal with certain classes of graphs.
A graph is a pair G = (V, E), where V = {v0, . . . , vn−1} is a set of vertices, some of
which are connected by edges. The set of edges is given by E ⊆ {(vi, vj) | 0 ≤
i, j ≤ n− 1}. Throughout this thesis, we constrain ourselves to graphs that do not
contain any loops, i. e., edges of the form (vi, vi).

Graphs can either be weighted or unweighted. In an edge-weighted or just
weighted graph, each edge is assigned a cost or weight according to a weight function
ω : E → R. In an unweighted graph, such a weight function does not exist, and we
usually assume every edge to have a weight of 1.

Both weighted and unweighted graphs can either be directed or undirected. In
a directed graph, each edge (vi, vj) has an orientation, with vi being the startpoint
and vj being the endpoint of (vi, vj). To vi, the edge (vi, vj) is an outgoing edge and
to vj, it is an incoming edge. The outdegree of vi is the number of outgoing edges

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

8 Chapter 1. Introduction

of vi, and the indegree of vi is the number of incoming edges of vi. A sequence
of pairwise distinct vertices U := (u0, u1, . . . , u) with ui ∈ V , for 0 ≤ i ≤ 	, is
called a path from u0 to u	 if, for every pair (ui, ui+1) with 0 ≤ i ≤ n− 1, there is an
edge (ui, ui+1) ∈ E. The length of the path is the sum of the edge weights of all these
edges (ui, ui+1). In the unweighted case, this coincides with the number of edges
on the path U, and hence, the length of this path is 	. We say that U is a shortest
path from u0 to u	 if, among all paths from u0 to u	, the path U has minimal length.
If there exists a path from u0 to u	, we also say that u	 is reachable from u0.

In an undirected graph, all edges are undirected, meaning that the edge (vi, vj) is
identical to the edge (vj, vi). Thus, edges are not pairs but unordered sets of size 2,
and any undirected edge (vi, vj) is usually written as {vi, vj}. We say that both vi
and vj are endpoints of the edge {vi, vj}. For each edge {vi, vj} ∈ E, the vertex vj is
said to be a neighbor of vi or adjacent to vi. For each vertex vi, all edges containing vi
are called incident to vi. The degree of vi is defined as the number of its neighbors. In
an undirected graph G = (V, E), a path between u0 and u	 is a sequence of pairwise
distinct vertices (u0, u1, . . . , u) such that, for each i with 0 ≤ i ≤ 	 − 1, the two
vertices ui and ui+1 are adjacent to one another. As in the directed case, the length
of a path is the sum of the weights and thus the number of edges in the unweighted
case. A sequence (u0, u1, . . . , u	, u0) is called a simple cycle in G if (u0, u1, . . . , u) is
a path with 	 ≥ 2 and if the edge {u0, u	} exists in E. If there is a path from vi to vj,
for any pair of vertices (vi, vj) ∈ V × V , the graph is called connected.

For any directed or undirected, weighted or unweighted graph G = (V, E),
the graph G ′ = (V ′, E ′) is called a subgraph of G if V ′ ⊆ V and E ′ ⊆ E. The
subgraph G ′ is called induced by V ′ if E ′ contains all edges that are also contained
in E, constrained to the vertex set V ′. Hence, the subgraph of G induced by V ′ ⊆ V is
the graph G ′ = (V ′, E ′) with E ′ = {(vi, vj) | vi, vj ∈ V ′ ∧ (vi, vj) ∈ E}.

Throughout this thesis, we will sometimes consider particular classes of graphs,
namely paths, cycles, and trees. In the following, we will give brief descriptions
for these three classes. Since we consider each of these classes in its respective
undirected unweighted version, we constrain our descriptions to these restricted
versions, without mentioning this explicitly from now on.

A path graph, for short also named path (not to confuse with a path within
a graph as described above), is a graph G = (V, E) with V = {v0, . . . , v	} and
E = {{vi, vi+1} | 0 ≤ i ≤ 	 − 1}. The length of the path is the number of edges
contained in E, which is 	. A cycle graph or cycle is a path graph as described above
with an additional edge between v	 and v0. Hence, G = (V, E) is a cycle graph if
V = {v0, . . . , v	} and E = {{vi, vi+1} | 0 ≤ i ≤ 	−1}∪ {{v	, v0}}. The length of the cycle
is the number of edges in E, which is 	 + 1. A graph G = (V, E) is called a tree if
G is connected and does not contain any simple cycles. In every tree, vertices of
degree at most 1 are called leaves; all other vertices, i. e., those with a degree of at
least 2, are called inner vertices. Sometimes, we choose one designated vertex of

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

1.3. Online Computation 9

a tree G = (V, E) to be the root of G. In this case, G is said to be rooted. For each
vertex vi ∈ V , there is exactly one shortest path U from the root to vi, and if this
path has length 	, we say that vi is on level 	 of the tree. For each vertex vi ∈ V on
level 	, every neighbor vj of vi on level 	 + 1 is called a child of vi. For each such
child vj, the vertex vi is the only adjacent vertex on level 	 and is called the parent
of vj. All other children of vi that are not vj itself are called siblings of vj. If the
maximum level of any vertex in the tree is d, then d is called the depth of the tree.

Sometimes, we consider q-ary trees, for some q ∈ N≥2. In the literature, a q-ary
tree of depth d is often defined as a rooted tree in which all inner vertices have at
most q children and the maximum level among all vertices is d. For our purposes,
we choose a more restrictive definition and define a q-ary tree of depth d to be a
rooted tree in which all inner vertices have exactly q children and all leaves are on
the same level d. In our case, each q-ary tree has exactly qd leaves. For q = 2, we
call such a q-ary tree a binary tree. Hence, in a binary tree of depth d, each inner
vertex has 2 children, and the number of leaves is 2d.

1.3 Online Computation

The classical scenario of online computation can be viewed as a game between
an online algorithm and an adversary. The game played is determined by the
given online optimization problem. The goal of the adversary is to construct a problem
instance that is as hard as possible for the online algorithm. The aim of the online
algorithm, also called online strategy, is to compute a good solution on the input
instance generated by the adversary. The input instance (also input sequence or just
input) is given to the algorithm as a sequence I = (x1, . . . , xn) of requests, exactly
one request in each round. Hence, the number of rounds corresponds to the length
of the input sequence, which we usually denote by n. The online algorithm has
to respond immediately to each request given in round i, i. e., before the next
request arrives, with an irrevocable output yi. The output sequence of an online
algorithm A on an input I is then (y1, . . . , yn), and we denote it by A(I).

To be able to compare the quality of online algorithms and their computed
solutions, we assign a value to each solution according to its quality. Depending
on the nature of the optimization problem, the algorithm is to achieve values
either as small or as large as possible. In the former case, the optimization problem
is called an online minimization problem; in the latter case, an online maximization
problem. For minimization problems, the function that serves to assign a value to
each solution is usually called a cost function; for maximization problems, we call
this function a gain function accordingly. The value of a particular solution is then
called the cost or the gain of this solution, respectively. For any instance I, a solution
A(I) computed by an algorithm A is optimal if it has minimum cost or maximum

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

10 Chapter 1. Introduction

gain, respectively, among all solutions computed on I by all possible algorithms.
Then we say that A is optimal on I. An algorithm that is optimal on every possible
input instance is called optimal and usually denoted by Opt throughout this thesis.
Obviously, without knowing the whole input instance in advance, it is not possible
for an online algorithm to be optimal in general; with this lack of knowledge,
the online algorithm A might make a decision in some round i that turns out to
be suboptimal later, when a larger part of the input sequence is known. Thus,
receiving the input sequentially is a huge drawback compared to receiving it
completely before the start of the computation, as so-called offline algorithms do.
Hence, we are interested in the quality of the given online algorithm, which is
usually measured by means of the competitive ratio, a measure of “how close to
optimal” the algorithm is. This means that we compare the online algorithm to an
optimal offline algorithm with unbounded memory and computing power. For
any instance I and any online algorithm A, the solution A(I) computed by A on I

is c-competitive if there is a constant a independent of I such that

cost(A(I)) ≤ c · cost(Opt(I)) + a (1.1)

for a minimization problem, and

gain(Opt(I)) ≤ c · gain(A(I)) + a (1.2)

for a maximization problem. An online algorithm A is c-competitive if (1.1) or
(1.2), respectively, holds for any possible input instance; hence, if A computes a
c-competitive solution on any possible input instance I. Thus, A has a competitive
ratio of at most c if there is a constant a such that, for any instance I, the solution
computed by A on I is c-competitive. We say that an online algorithm as well as
a solution is strictly c-competitive if the corresponding inequality holds for a ≤ 0.
An optimal algorithm is strictly 1-competitive. (Diverging from some examples in
the literature, we use two different formulas for minimization and maximization
problems, making sure that the competitive ratio is always at least 1.)

In this way, we can analyze the competitive ratio of a given online algorithm or
investigate what is the best achievable competitive ratio of any online algorithm
for a given online optimization problem. Since it has been introduced in 1985 by
Sleator and Tarjan [ST85], the competitive ratio has developed to the most relevant
measure of the quality of online algorithms. Being a worst-case measurement, the
competitive ratio in the game between an online algorithm and an adversary has
proven to be very helpful in analyzing the hardness of online problems [BEY98].

In this game, the online algorithm can be strengthened by allowing it to use
random bits. In this case, we are talking about a randomized online algorithm. If
the adversary already knows these random bits before it has to construct its hard
input instance, the randomization is obviously utterly useless. Therefore, usually

Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden.
Es gilt nur für den persönlichen Gebrauch.

