
Introduction

Many physical problems can be formulated in terms of linear or nonlinear par-
tial differential equations. As the analytical solution is usually unknown in the
case of a realistic modelling of complex engineering applications, numerical
methods are indispensable.

There exist various approaches to solve partial differential equations numeri-
cally. Depending on the type of the equation, the dimension of the problem, the
complexity of its boundary conditions, and the smoothness of its solution, it
may be advantageous to use either finite differences or weighted residual
methods (e.g., spectral and pseudospectral methods, wavelets, discontinuous
Galerkin methods, finite elements, finite volumes). Finite volume schemes are
well suited to discretize conservation laws, e.g., in aerodynamics, because they
inherently provide flux conservation even on arbitrary meshes. Finite elements
are widely employed in mechanical engineering because of their ability to
resolve complex-shaped structures with a relatively high accuracy. The more
general discontinuous Galerkin method allows for discontinuities between the
discretization elements. The adaptive multiresolution potential of wavelet
schemes is particularly advantageous if the qualitative structure of the solution
varies strongly in the considered domain, e.g., if it has one or a few isolated
sharp spikes or shock waves and a relatively smooth shape elsewhere.

For problems with simple geometries and globally smooth solutions,
(pseudo-)spectral and finite difference methods are very efficient. Spectral and
pseudospectral methods offer an excellent convergence, but are computationally
not very fast due to their global stencil. In contrast, finite difference methods
have a fixed stencil width that makes them computationally fast, but also limits
their order of convergence with respect to the grid spacing τ .

In this work, it is shown that the computational speed of finite differences
can be combined with the excellent accuracy of spectral methods, resulting in
quasi-spectral finite differences . The corresponding finite difference weights are
derived either by spectral interpolation or weighted least-squares optimization,
with the relative frequency window width ϑ∈ (0, 1). In the case of spectral inter-
polation, it is required that for certain a-priori chosen discrete frequencies
φl∈ [−ϑπ, ϑπ], the finite differentiation of harmonic functions eiφlt/τ is exact.
In the case of weighted least-squares optimization, the finite differentiation error
for harmonic functions eiϕt/τ is minimized with respect to some scalar-product
induced norm representing an integral or a discrete sum over frequencies
ϕ∈ [−ϑπ, ϑπ]. One of the theoretical results of this work states that for each
weighted least-squares problem there exists a unique equivalent spectral inter-
polation problem with interpolation frequencies φl ∈ [ − ϑπ, ϑπ]. Important
tools for this proof are newly discovered Haar systems from combinations of
algebraic and trigonometric monomials.
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As expected from their construction, these quasi-spectral finite difference
formulae possess a relatively uniform accuracy when applied to harmonic func-
tions eiϕt/τ with normalized angular frequencies ϕ ∈ [ − ϑπ, ϑπ]. In contrast,
standard Taylor-optimized finite differences, based on exactness for algebraic
monomials up to the highest possible degree, have the maximal possible order
of consistency in the low-frequency limit ϕ→ 0, but a strongly increasing error
for higher frequencies. Thus, for solutions having a wide rectangular-shaped
spectrum of relevant frequencies, the quasi-spectral finite differences can be sub-
stantially more accurate. For the first time, it is proven that the optimal order
of consistency of the Taylor approach can also be achieved by such quasi-spec-
tral finite differences if the relative frequency window width ϑ is chosen suffi-
ciently small in comparison to the grid spacing τ .

Important technical examples for functions with rectangular-shaped fre-
quency spectra are wavelength division multiplexing (WDM) signals. These are
superpositions of a number of different carrier frequencies (wavelength chan-
nels), each modulated by an envelope carrying information to be transmitted to
the receiver. As this modulation technique is predestinated for a very efficient
utilization of the huge bandwidth of optical fibers, it is the preferred format for
metropolitan, long-haul and intercontinental optical fiber networks, which are
indispensable to cover the rapid growth of the internet data traffic. For the
optimization of the network parameters, extensive numerical simulations are
required.

The propagation of the signals in optical fibers can be modeled by the one-
dimensional nonlinear Schrödinger equation (NLSE). Compared to most other
applications for this equation, e.g., quantum mechanics and plasma physics, the
time and space variables are interchanged. Hence, the corresponding initial
value problem has boundary conditions at time points (in a retarded Galilei-
transformed time frame moving with group velocity) and is integrated in space
along the fiber. Important analytical solutions are the so-called solitons . They
have a spatially periodic shape and are often used to compare the accuracy of
different numerical solvers for the NLSE.

For the propagation of WDM signals over long-haul distances of hundreds to
thousands of kilometers, the computation times are tremendous and therefore
critical. Thus, the improved efficiency from the proposed quasi-spectral finite
difference methods is not only convenient but also necessary to allow for a more
economic optimization of fiber-optic system parameters.

This work is organized as follows: Chap.1 gives an overview of previously
published work on quasi-spectral finite differences and solvers for the nonlinear
Schrödinger equation and highlights the main achievements of the present work.
A detailed derivation of the nonlinear Schrödinger equation from Maxwell’s
equations is presented in Chap.2, including a short presentation of low-order
soliton solutions. In Chap.3, the consistency of quasi-spectral finite difference
formulae is proven and compared to the standard Taylor approach. Further-
more, it is shown that, for each weighted least-squares problem, there exists a
unique equivalent spectral interpolation problem. This is proven employing
Haar systems from combinations of algebraic and trigonometric monomials,
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which cannot be found yet in the literature to the best of the author’s knowl-
edge. A key tool is a certain lemma on the arccos function. After applying the
finite differences for the temporal differentiation, numerical methods for the
spatial integration of the resulting semidiscrete nonlinear system are presented
and analyzed in Chap.4. The efficiency of the new methods for the propagation
of solitons and practically relevant WDM signals is demonstrated in Chap.5. A
brief summary and outlook conclude the main part of the work. Appendix A
gives a short introduction to (weighted) least-squares approximations and Haar
systems. Appendix B summarizes the frequently employed Fourier transform
equivalences. Alternative semidiscretization techniques are presented in
Appendix C. Appendix D states some well-known and repeatedly applied theo-
rems.
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