
1. Introduction

Commonly, item response models and paired comparison models are treated as different
model classes, suited for different data situations. However, there is a great similarity be-
tween item response data and paired comparisons and, accordingly, between the respective
modeling approaches. Item response data appear when test persons face a certain number
of items which are designed to measure a specific latent trait of the test persons. Such
latent traits can, for example, be certain skills (e.g. intelligence) of the test persons or
attitudes towards a specific issue (e.g. xenophobia). In the simplest case only two out-
comes are possible, for example right or wrong answers or approving or disapproving of a
statement.

Paired comparison data occur if two objects or items compete in a certain way. The most
frequent occurrence of paired comparisons is when two objects are presented and raters
have to declare a preference for one or the other object. But also in other situations paired
comparisons appear, as, for example, in sport competitions between two players or teams.
Again, in the simple case only two outcomes are possible, namely the win/preference of one
object over the other.

Both in item response data and in paired comparisons, the outcome refers to the result of
a specific competition between two actors. Therefore, item response data can be seen as
a special type of paired comparison data. Tutz (1989) distinguishes between homogeneous
and heterogeneous paired comparisons. In this sense, item response data are heterogeneous
paired comparisons as the matched pairs are pairs of one item and one respondent. In
contrast, homogeneous paired comparisons treat matched pairs of two objects or items.

The basic and most popular models for these data are the Rasch model (RM) for item
response data and the Bradley-Terry or Bradley-Terry-Luce model (BTL) for paired com-
parison data. The Rasch model (Rasch, 1960) assumes that the probability that a person
solves an item is determined by the difference between one latent parameter representing
the person and one latent parameter representing the item. Let the random variable Ypi

represent the response where Ypi = 1 if person p solves item i and Ypi = 0 otherwise. With
the Rasch model the probability that person p solves item i is modeled by

P (Ypi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
p = 1, . . . , P , i = 1, . . . , I
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2 1. Introduction

where θp is the person parameter and βi is the item parameter. In contrast, the Bradley-
Terry model (Bradley and Terry, 1952) for a competition between two objects ar and as

models the probability that ar beats as by

P (Y(rs) = 1) =
exp(γr − γs)

1 + exp(γr − γs)
.

The parameters γr, r = 1, . . . , m, are the trait parameters of the objects {a1, . . . , am}. The
random variable Y(rs) denotes the response where Y(rs) = 1 if object ar is preferred over as

and Y(rs) = 0 otherwise.

Comparing these two basic models, "the direct relationship between the RM and the BTL is
obvious" (Fischer and Molenaar, 1995). Both models are logit models, their linear predictors
represent the difference between the latent traits of both actors. The main difference is,
that the two actors are one item and one person for the Rasch model but two items for
the Bradley-Terry model. In this thesis, both models for homogeneous and heterogeneous
paired comparisons, in particular the Rasch model and the Bradley-Terry model, will be
extended in various ways. The proposed extensions are supposed to allow for more flexibility
in the modelling of item response and paired comparison data and for the inclusion of more
information than in classical modelling approaches. A main focus will be on the inclusion
of covariates.

All proposed methods will use regularization techniques for estimation. The main goal
of regularization is to prevent overfitting and to allow for unique solutions in ill-posed
problems, see Hastie et al. (2009) for an introduction into a broad variety of regulariza-
tion methods. In this thesis, two different regularization techniques will be used, namely
penalization and boosting. In penalization methods for regression models, the regular log-
likelihood is maximized with respect to a certain side constraint. The resulting penalized
likelihood

lp(β) = l(β)− λJ(β)

for a model with a general parameter vector β consists of the regular log-likelihood l(β)
and a penalty term J(β) in combination with a tuning parameter λ. Famous examples
for penalization methods are the ridge regression (Hoerl and Kennard, 1970) or lasso re-
gression (Tibshirani, 1996). While ridge restricts the L2 norm of the parameter vector
β = (β1, . . . , βp) using the penalty term

J(β) =
p∑

i=1
β2

i ,
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lasso restricts the L1 norm of the parameter vector with the penalty term

J(β) =
p∑

i=1
|βi|.

A main feature of penalization methods is shrinkage. The estimated coefficients are shrunk
toward zero leading to a decreased variance of the estimates. In total, although the shrink-
age effect goes along with biased estimates the decreased variance can lead to a decreased
mean square error. Some penalization methods as, for example, the lasso also provide a
dimension reduction in the covariate space. In the case of lasso, this means that lasso is
able to provide parameter estimates equal to zero. Therefore, lasso allows for automatic
parameter selection. In recent years, several penalty terms suited for different regression
models and different data structures were developed.

Boosting evolved within the machine learning community rather than in the statistical
modelling community. First approaches were proposed by Freund et al. (1996) and Tukey
(1977). In the context of regression models, boosting was developed by Friedman et al.
(2000) and extended, for example, by Bühlmann and Yu (2003) and Bühlmann and Hothorn
(2007a). The main feature of boosting is the principle that many weak learners are combined
into one joint and (hopefully) strong learner. In regression models, boosting combines many
weak learners into a joint model. The main goal is to gradually improve a certain loss
function, for example the L2 loss or specific likelihood functions. In this context, a learner
is considered to be a weak learner if it improves the respective loss function only by a little
amount. This concept helps to avoid overfitting as the procedures is not supposed to be
performed until convergence. Many boosting procedures, including the one proposed in this
thesis, also allow for variable selection.

Guideline through the Thesis

This thesis consists of 10 chapters and three appendices. Chapters 2 and 3 contain general
introductions into the most important topics treated in Chapters 4 and 5. Chapter 2 pro-
vides an introduction into the Rasch model, together with its most important assumptions
and properties and the typical estimation methods. Chapter 3 gives a short introduction
into the topic of differential item functioning. As Chapters 4 and 5 propose new methods
for the detection of differential item functioning, Chapter 3 also presents some of the most
popular methods for the detection of differential item functioning.

Chapter 4 proposes a new diagnostic tool for the identification of differential item function-
ing (DIF). In particular, an explicit model for differential item functioning is proposed that
includes a set of variables. In contrast to most classical approaches to detect DIF, which
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only allow to consider few (mostly two) subpopulations, the proposed model can handle
both continuous and categorical covariates. The ability to include a set of covariates en-
tails that the model contains a large number of parameters. Penalized maximum likelihood
estimators are used to solve the estimation problem and to identify the items that induce
DIF. It is shown that the method is able to detect items with DIF. Simulations and two
applications demonstrate the applicability of the method.

Chapter 5 continues the idea from Chapter 4 to identify differential item functioning using
several covariates at the same time and proposes a boosting algorithm instead of the penal-
ized likelihood approach. The covariates can be both continuous and (multi-)categorical,
and also interactions between covariates can be considered. The method works for the gen-
eral parametric model for DIF in Rasch models proposed in Chapter 4. Since the boosting
algorithm selects variables automatically, it is able to detect the items which induce DIF.
It is demonstrated that boosting competes well with traditional methods in the case of
subgroups. Furthermore, it outperforms the method proposed in Chapter 4 in the case
of metric covariates. The method is illustrated by an extensive simulation study and an
application to real data.

While Chapters 2-5 treat some basics and some new proposals in the context of item
response data and the inclusion of covariates, the following chapters consider methods
suited for paired comparison data. First, Chapter 6 introduces the basic Bradley-Terry
model together with the most important existing extensions of the model.

In traditional paired comparison models heterogeneity in the population is simply ignored
and it is assumed that all persons have the same preference structure. In Chapter 7, a new
method to model heterogeneity in paired comparison data is proposed. The preference of
an item over another item is explicitly modelled as depending on attributes of the subjects.
Therefore, the model allows for heterogeneity between subjects as the preference for an item
can vary across subjects depending on subject-specific covariates. Since by construction
the model contains a large number of parameters we propose to use penalized estimation
procedures to obtain estimates of the parameters. The used regularized estimation approach
penalizes the differences between the parameters corresponding to single covariates. It
enforces variable selection and allows to find clusters of items with respect to covariates.
We consider simple binary but also ordinal paired comparisons models. The method is
applied to data from a pre-election study from Germany.

In Chapter 8, a general paired comparison model for the evaluation of sport competitions is
proposed. It efficiently uses the available information by allowing for ordered response cat-
egories and team-specific home advantage effects. Penalized estimation techniques are used
to identify clusters of teams that share the same ability. The model is extended to include
team-specific explanatory variables. Therefore, in contrast to Chapter 7, object-specific co-
variates are considered instead of subject-specific covariates. It is shown that regularization
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techniques allow to identify the contribution of team-specific covariates to the success of
teams. The usefulness of the method is demonstrated by investigating the performance and
its dependence on the budget for football teams of the German Bundesliga.

In Chapter 9 an approach for the analysis and prediction of international soccer match
results is proposed. In contrast to Chapter 8, the result of one match is not modeled as an
ordered response. Instead, the number of scored goals is modeled directly using a Poisson
distribution. To account for the paired comparison structure of the data, the linear predictor
consists of differences between the covariates of both competing teams. Therefore, similar
as in Chapter 8 object-specific covariates are included in the model. Lasso approaches are
used to achieve variable selection and shrinkage. Based on preceding FIFA World Cups,
two models for the prediction of the FIFA World Cup 2014 are fitted and investigated.
Based on the model estimates, the FIFA World Cup 2014 is simulated repeatedly and
winning probabilities are obtained for all teams. Both models favor the actual FIFA World
Champion Germany.

In Chapters 4 and 5 the concept of effect stars is used to visualize parameter estimates
for DIF items, in chapter 7 effect stars are used to visualize estimates from the proposed
method BTLLasso. Originally, effect stars were proposed to visualize parameter estimates
in categorical response models, in particular for multinomial and ordinal logit models.
Therefore, in Appendix A the original concept of effect stars in the context of multinomial
logit models is introduced. The multinomial logit model is the most widely used model for
nominal multi-category responses. One problem with the model is that many parameters are
involved, another that interpretation of parameters is much harder than for linear models
because the model is non-linear. Both problems can profit from graphical representations.
Effect stars visualize the effect strengths by star plots, where one star collects all the
parameters connected to one term in the linear predictor. In contrast to conventional star
plots, which are used to represent data, the plots represent parameters and are considered
as parameter glyphs. The method is extended to ordinal models and illustrated by several
data sets.

In order to keep the single chapters self-contained, every chapter contains separate intro-
ductions to the relevant topics and a separate conclusion. Therefore, every chapter can also
be read separately but some topics will repeat themselves.

Contributing Manuscripts

Parts of this thesis were published as articles in peer reviewed journals, other parts were
published in proceedings of scientific conferences or as technical reports at the Department
of Statistics of the Ludwig-Maximilians-Universität München. In the following, chapter by
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6 1. Introduction

chapter all contributing manuscripts are listed together with a declaration of the personal
contributions of the respective authors:

Chapter 4: Tutz and Schauberger (2015b). A Penalty Approach to Differential Item
Functioning in Rasch Models. Psychometrika 80 (1), 21 – 43

The project was initiated by Gerhard Tutz and further developed jointly by Gerhard Tutz
and Gunther Schauberger. Gunther Schauberger implemented the method and performed
the simulations and the real data analyses. Gunther Schauberger developed the correspond-
ing R-package DIFlasso. The manuscript was written close collaboration of both authors.
The original manuscript is extended by Section 4.6, which discusses concepts of variable
selection within the proposed method. Apart from this section and some minor modifica-
tions Chapter 4 and Tutz and Schauberger (2015b) match. The technical report 134 (Tutz
and Schauberger, 2012a) and the conference paper from the IWSM 2013 (Schauberger and
Tutz, 2013) contain preliminary work on the project.

Chapter 5: Schauberger and Tutz (2015b). Detection of Differential Item Functioning
in Rasch Models by Boosting Techniques. British Journal of Mathematical and Statistical
Psychology, published online

The project was initiated jointly by Gerhard Tutz and Gunther Schauberger. Main au-
thor of the manuscript was Gunther Schauberger in close collaboration with Gerhard Tutz.
Gunther Schauberger was responsible for the implementation of the method, of the sim-
ulation studies and the application to real data. Furthermore, Gunther Schauberger de-
veloped the corresponding R-package DIFboost. Apart from minor modifications Chapter
5 and Schauberger and Tutz (2015b) match. The conference paper from the IWSM 2014
(Schauberger and Tutz, 2014) contains preliminary work on the project.

Chapter 7: Schauberger and Tutz (2015c). Modelling Heterogeneity in Paired Compar-
ison Data – an L1 Penalty Approach with an Application to Party Preference Data. De-
partment of Statistics, LMU Munich, Technical Report 183

The project was initiated and realized in close collaboration. Gunther Schauberger as the
first author mainly wrote most of the manuscript and performed the presented analyses. He
was also responsible for the implementation of the method and the corresponding R-package
BTLLasso. The original manuscript is extended by Subsection 7.4.3 which discusses the
inclusion of twofold interactions in the application and by a paragraph applying the concept
of effect stars to the estimates of the proposed method. Apart from these extensions and
minor modifications Chapter 7 and Schauberger and Tutz (2015c) match. The conference
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paper from the IWSM 2015 (Schauberger and Tutz, 2015a) contains preliminary work on
the project.

Chapter 8: Tutz and Schauberger (2015a). Extended Ordered Paired Comparison Mo-
dels with Application to Football Data from German Bundesliga. Advances in Statistical
Analysis, 99 (2), 209 – 227

The manuscript was a joint project of Gerhard Tutz and Gunther Schauberger. Both
authors contributed to the manuscript. The data collection and all implementations were
done by Gunther Schauberger. The original manuscript is extended by Section 8.6 where the
analyses from the previous sections are applied to the data from another Bundesliga season.
Apart from this section and minor modifications Chapter 8 and Tutz and Schauberger
(2015a) match. The technical report 151 (Tutz and Schauberger, 2014) contains preliminary
work on the project.

Chapter 9: Groll, Schauberger, and Tutz (2015). Prediction of Major International Soccer
Tournaments Based on Team-Specific Regularized Poisson Regression: An Application to
the FIFA World Cup 2014. Journal of Quantitative Analysis in Sports 11 (2), 97 – 115

Andreas Groll and Gunther Schauberger initiated and conducted the project in close collab-
oration. In particular, they were equally responsible for the data collection, the implemen-
tation of the methods and the manuscript. Gerhard Tutz supervised the methodological
part of the manuscript and helped to improve the manuscript by extensive discussions.
Apart from minor modifications Chapter 9 and Groll et al. (2015) match. The technical
report 166 (Groll et al., 2014) contains preliminary work on the project.

Appendix A: Tutz and Schauberger (2013): Visualization of Categorical Response Mo-
dels: From Data Glyphs to Parameter Glyphs. Journal of Computational and Graphical
Statistics, 22 (1), 156 – 177

The manuscript was mainly drafted by Gerhard Tutz with contributions of Gunther
Schauberger. Gunther Schauberger was responsible for the implementation including the
corresponding R package EffectStars (Schauberger, 2014b) and for all visualizations in
the manuscript. He was strongly involved in all parts of the final manuscript. Apart from
minor modifications Appendix A and Tutz and Schauberger (2013) match. The technical
report 117 (Tutz and Schauberger, 2012a) and the conference paper from the IWSM 2012
(Schauberger and Tutz, 2012) contain preliminary work on the project.
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8 1. Introduction

Software

Most computations in this thesis were done with the statistical program R (R Core Team,
2015), parts were implemented in C++ but are integrated in R. For most of the methods
proposed in this thesis add-on packages for R were developed which can be downloaded from
the Comprehensive R Archive Network (CRAN). In particular, the following R-packages
were developed:

DIFlasso provides the method DIFlasso proposed in Chapter 4 (Schauberger, 2014a).

DIFboost provides the method DIFboost proposed in Chapter 5 (Schauberger, 2015b).

BTLLasso provides the method BTLLasso proposed in Chapter 7 (Schauberger, 2015a).
The fitting algorithm of BTLLasso is implemented in C++ code which is integrated into
R using the packages Rcpp (Eddelbuettel, 2013) and RcppArmadillo (Eddelbuettel
and Sanderson, 2014).

EffectStars provides the concept of effect stars proposed in Appendix A (Schauberger,
2014b).
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2. The Rasch Model

In the following, the basic Rasch model (Rasch, 1960) will be explained in more detail. The
Rasch model is considered to be a starting point of the item response theory (IRT) which
over the last decades replaced the classical test theory (CTT) as the most popular method
in the analysis of tests or questionnaires in general. The main difference between the CTT
and the IRT is that the IRT models a probabilistic distribution of the correct response
probability. The most general IRT model is the so called 3PL model (Birnbaum, 1968). It
models the probability of a specified response depending on item parameters and a person
parameter. Typically, such a specified response will simply be the (either correct or wrong)
answer on a test question. If person p, p = 1, . . . , P, tries to solve item i, i = 1, . . . , I, the
response is denoted as

Ypi =
⎧⎨
⎩1 person p solves item i

0 otherwise

Accordingly, the 3PL model is denoted by

P (Ypi = 1) = ci + (1− ci)
exp (ai(θp − βi))

1 + exp (ai(θp − βi))
.

Here, θp represents the person ability and βi represents the item difficulty. The parameters
ci and ai represent the guessing parameter and the discrimination parameter of item i.
The model is called 3PL model as one item i is characterized by three item parameters,
ai, βi, ci. From the 3PL model, the 2PL model and the 1PL model can be obtained as special
cases. In the 2PL model, it is assumed that no guessing is possible and the restriction
ci = 0, i = 1, . . . , I is applied. In the 1PL model (in the following referred to as the
Rasch model), additionally equal discrimination parameters are assumed by restricting
ai = 1, i = 1, . . . , I.

In the analysis of item response data, the Rasch model is the most popular choice. If person
p, p = 1, . . . , P, tries to solve item i, i = 1, . . . , I, this is specified by the Rasch model by

P (Ypi = 1) =
exp(θp − βi)

1 + exp(θp − βi)
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10 2. The Rasch Model

where θp represents the latent person ability and βi represents the latent item difficulty.
For identifiability, a restriction on the parameters is needed. Frequently, either a person
parameter or an item parameter is set zero. Basically, the Rasch model simply represents a
binomial logit model and can, therefore, easily be embedded into the framework of gener-
alized linear models (GLMs) (McCullagh and Nelder, 1989). The Rasch model makes the
person abilities and the item difficulties comparable. For example, if the ability of person
p equals the difficulty of item i (i.e. θp = βi), the Rasch model will predict a probability of
0.5 that person p will solve item i.

2.1. Assumptions and Properties of the Rasch Model

The Rasch model is accompanied by four main assumptions, namely monotonicity, uni-
dimensionality, conditional independence and sufficiency, compare Hatzinger (1989) and
Kelderman (1984).

Monotonicity The solving probability P (Ypi = 1|θp, βi) is strictly monotone increasing for
θp ∈ . Furthermore, P (Ypi = 1|θp, βi) → 0 for θp → −∞ and P (Ypi = 1|θp, βi) → 1
for θp →∞ holds. Therefore, with increasing ability, the probability to solve an item
increases.

Unidimensionality Given the item difficulty, the probability to solve an item solely depends
on the true value of the respective person on the latent trait. That means that
P (Ypi = 1|θp, βi, φ) = P (Ypi = 1|θp, βi) holds for any additional variable φ. Given the
ability parameter and the item difficulty, the solving probability does not depend on
any other variables φ.

Conditional independence Given the latent trait, the items have to be stochastically in-
dependent. Therefore, for equally able persons the solving probabilities for different
items are independent. Solving one item does not increase or decrease the probabil-
ity to solve another item. Conditional independence is also widely known as local
independence.

Sufficiency The total score of a person Sp =
∑

i Ypi contains the entire information for the
ability of the person. The score is a sufficient statistic for the person parameter θp,
persons with the same score have the same ability. Accordingly, also the number of
persons that solved an item i, namely Ri =

∑
p Ypi, is a sufficient statistic for the item

difficulty.

In the Rasch model (as in all IRT models), items can be visualized using so-called item
characteristic curves (ICCs). An ICC shows the probability of a correct response on the
respective item depending on the person parameter θp. Figure 2.1 exemplarily shows the
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2.2 Estimation Approaches for the Rasch Model 11

ICCs for three items with different item difficulties. The main feature of ICCs in Rasch
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Figure 2.1.: Exemplary item characteristic curves for three items in a Rasch model

models is that they all share the same form (they have the same slope) and are only shifted
vertically depending on the respective item difficulty.

2.2. Estimation Approaches for the Rasch Model

To estimate the Rasch model, three different maximum likelihood approaches exist: Joint
maximum likelihood (JML), conditional maximum likelihood (CML) and marginal maxi-
mum likelihood (MML). JML simultaneously provides estimates both for the person pa-
rameters and the item parameters. CML and MML only provide item parameters, person
parameters have to be estimated separately.

Joint Maximum Likelihood Estimation

The joint maximum likelihood estimation of Rasch models is the easiest and most intuitive
estimation method. If an appropriate design matrix is built, it can easily be performed
using standard software for GLMs. Using the restriction θP = 0, the design matrix can be
seen from
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12 2. The Rasch Model

log
(

P (Ypi = 1)
P (Ypi = 0)

)
= θp − βi = 1TP (p)θ − 1TI(i)β = xTpiδ,

where 1TP (p) = (0, . . . , 0, 1, 0, . . . , 0) has length P − 1 with 1 at position p, 1TI(i) =
(0, . . . , 0, 1, 0, . . . , 0) has length I with 1 at position i, and the parameter vectors are
θ = (θ1, . . . , θP −1), β = (β1, . . . , βI) yielding the total vector δT = (θT,βT). The design
vector linked to person p and item i is given by xTpi = (1TP (p),−1TI(i)). Finally, the Rasch
model can be estimated by combining all single design vectors xpi into a design matrix and
by stacking all responses Ypi appropriately into a response vector.

Estimation based on JML faces two main problems. First, if a person solves all or no
items, its ability estimate will diverge to θp = ∞ or θp = −∞, respectively. Equivalently,
items that were solved by all or no persons will not have finite estimates although this case
is much more unlikely as in general the number of persons clearly exceeds the number of
items. After all, in both cases the respective person or item has to be removed from the
design matrix. Second, the estimates for the item parameters from JML are inconsistent
and biased for P → ∞ and I fixed, see e.g. Andersen (1973b, 1980). Therefore, in recent
years JML is decreasingly used in practice.

Conditional Maximum Likelihood Estimation

Nowadays, the conditional maximum likelihood method is the most popular choice. It is
based on the property, that the sum score Sp =

∑
i Ypi of a person p is sufficient for the

ability θp of person p. When conditioning on the sum scores the solving probabilities only
depend on the item difficulties. Therefore, CML initially only provides estimates for the
item parameters. Based on the item parameters, estimates for the person parameters can
be obtained in a second step.

Let yp = (yp1, . . . , ypI) represent the response pattern of person p with the corresponding
sum score sp =

∑
i ypi. Following Hatzinger (1989), the probability to observe the pattern

yp, conditional on the respective sum score Sp, is denoted by

P (Yp = yp|Sp = sp) = P (Yp = yp)
P (Sp = sp)

=
exp(θpsp) exp(−∑i βiypi)/

∏
p(1− exp(θp − βi))

exp(θpsp)γ(sp; β1, . . . , βI)/
∏

p(1− exp(θp − βi))
. (2.1)

Here, γ(sp; β1, . . . , βI) =
∑

y|sp exp(−
∑

i βiypi) represents the elementary symmetric func-
tion and y|sp represents all possible response patterns with a sum score sp. It can be seen
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2.2 Estimation Approaches for the Rasch Model 13

that all terms depending on θp can be eliminated from (2.1). Combining all possible sum
scores t = 0, . . . , I, the conditional likelihood can finally be denoted by

Lc =
exp(−∑i βiri)∏

t γ(t; β1, . . . , βI)nt
,

where ri =
∑

p ypi denotes the number of persons that solved item i and nt is the number of
subjects with sp = t. Maximizing the conditional likelihood provides consistent estimates
for the item parameters when P →∞. Afterwards, the person parameters can be estimated
assuming the item parameters to be fixed. The conditional maximum likelihood shares the
problem of the joint maximum likelihood that for items solved by all or no persons and for
persons that solved all or no items, no finite estimates can be found.

Marginal Maximum Likelihood Estimation

Similar to the conditional maximum likelihood approach, the marginal likelihood approach
uses the trick to estimate the item parameters separately by eliminating the person param-
eters from the likelihood. In the case of the marginal likelihood, this is done by assuming
a certain distribution for the person parameters. Typically, the person parameters are as-
sumed to be normally distributed. With a given distribution, the person parameters can
be integrated out from the likelihood.

The person parameters are assumed to be a random sample of the distribution G(θ). Then
the probability to observe the pattern yp can be denoted by

P (Yp = yp) =
∫ ∞

−∞
P (yp|θp)dG(θp).

Using the parameters of the Rasch model, this can be denoted by

P (Yp = yp) = exp(βiri)
∫ ∞

−∞
exp(θpsp)∏I

i=1(1− exp(θp − βi))
dG(θp).

Finally, the marginal likelihood is defined as product over all persons of the probability
above. Then, the likelihood is a function depending on the item parameters and the distri-
bution G(θ) and can be maximized with regard to the respective parameters. Due to the
distributional assumption, using the marginal likelihood the estimates for the persons with
perfect scores or scores of zero are finite.
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3. Differential Item Functioning

Psychological or educational tests are typically used to investigate a latent trait of a person
like the intelligence or other specific skills. For this purpose, appropriate items are needed
to provide a valid measurement of the respective trait. Items are considered to be unfair
if, for a specific item, two persons with the same underlying latent trait have different
probabilities to answer the item correctly. Then, the item functions differently for two
persons with the same value of the latent trait. Therefore, this phenomenon is called
differential item functioning (DIF). In former publications, DIF was also denominated by
the terms measurement bias or item bias, see, e.g., Lord (1980), Swaminathan and Rogers
(1990) or Millsap and Everson (1993). Nowadays, the more neutral term of differential item
functioning has widely prevailed.

Over the past decades, a vast amount of methods has been proposed to detect DIF. For an
overview of the most popular methods see, e.g., Holland and Wainer (2012), Millsap and
Everson (1993) or, more up to date, Magis et al. (2010). Typically, DIF is investigated by
testing if special (known) characteristics of the participants like gender or ethnicity alter
the probability to score on an item. Alternatively, also (unknown) latent classes could be
assumed to describe DIF as proposed by Rost (1990). Here one assumes, that a model
holds for all persons within a latent class but models for different classes differ. Since it
is unclear what the latent classes represent, interpretation is rather hard and much less
intuitive than for DIF between known groups. Therefore, latent class models have not
become an established tool in DIF detection.

DIF can be divided into uniform and nonuniform DIF. Uniform DIF means that the differ-
ence between the solving probabilities for an item is constant along the person abilities for
two equally able persons. In nonuniform DIF, the magnitude of the DIF effect depends on
the respective person ability. Figure 3.1 exemplarily shows the item characteristic curves
for items with uniform (left) and nonuniform (right) DIF between two subgroups of the
population. It can be seen, that for nonuniform DIF the item characteristic curves can also
be crossing. While the item is easier for group 1 than for group 2 on a low ability level it
is harder on a high ability level. Within the context of IRT models, nonuniform DIF can
be found in 2PL or 3PL models because only here the item characteristic curves can have
different slopes. In case of the Rasch model introduced in Chapter 2, only uniform DIF is
possible as all discrimination parameters are assumed to be fixed ai = 1, i = 1, . . . , I.
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