TABLE OF CONTENTS

1 Intro	oduction	3	
1.1 Natu	re's Energy Source – The Photosynthesis	5	
1.2 Artif	icial Photosynthesis – Possible Energy Supply of the Future	8	
1.3 Wate	er Oxidation Catalysis – Demands and Investigative Strategies	10	
1.3.1	The Structure of Metal-Oxo Compounds	11	
1.3.2	Mechanisms of Water Oxidation Catalysis	13	
1.3.3	Catalyst Analysis –Strategies of Investigation	18	
1.3.4	Choice of the Catalytically Active Site - Suitable Transition Metals	24	
1.4 Mile	stones in Ruthenium-Based Water Oxidation Catalysis Research	27	
1.4.1	The Blue Dimer	28	
1.4.2	The Ru ₂ -Hbpp Complexes	30	
1.4.3	The Ru ₂ -Mebbp Complex	32	
1.4.4	The Series of $[Ru\{N_3\}\{N_2\}(H_2O)]$ -Type Complexes	34	
1.4.5	The Ru-bda Complexes	39	
1.4.6	The Ru ₂ -H ₂ dabimp Complex	42	
2 Obje	2 Objectives		
3 Com	plexes with a Bis(pentadentate) Ligand System	49	
3.1 Intro	duction	49	
3.2 Synthesis of the Ligand and Ru- and Mn-Complexes		52	
3.3 Struc	3.3 Structural Characterisation in Solution and Solid State		

TABLE OF CONTENTS

3.3.1	The Ligand HL ^{bis5}	56	
3.3.2	Ruthenium containing Complexes	57	
3.3.3	The Manganese Containing Complex	60	
3.4 Dynamic NMR Investigations of Ru ^{bis5} (MeCN) ₂			
3.5 Investigations of Redox Chemistry			
3.6 Water Oxidation Catalysis			
3.7 Con	3.7 Conclusion		
	henium Complexes with Two Similar Bis(tridentate) and Systems Containing Benzimidazole Side Arms.	<u>77</u>	
4.1 Intro	oduction	77	
4.1.1	Ruthenium WOCs Containing Benzimidazole Functions	77	
4.1.2	Targeted Ligand Design and Their Binuclear Ruthenium WOCs	79	
4.2 Synthesis of Ligands and Ru Complexes			
4.2.1	Bis(tridentate) Ligands HL ^{IM-H} and HL ^{IM-Me}	81	
4.2.2	Complex Synthesis with Axial Pyridine Ligands	82	
4.2.3	Complex Synthesis with Pyridine Derivatives as Axial Ligands	83	
4.3 Characterisation in Solution and Solid State			
4.3.1	The Ligands HL ^{IM-H} and HL ^{IM-Me}	85	
4.3.2	Complexes with Pyridine as Axial Ligands	87	
4.3.3	Complexes with Pyridine Derivatives as Axial Ligands	91	
4.4 Investigation of Redox Chemistry			
4.4.1	Electrochemical Measurements – Cyclic Voltammetry	93	
4.4.2	Spectroelectrochemical Measurements	97	

4.4.3	Redox Properties of 1 ^{IM-H} (OAc) and 1 ^{IM-Me} (OAc) in Comparison	100
4.5 Wate	er Oxidation Catalysis	103
4.6 Conclusion		
5 Ruth	enium Complexes with a Trianionic Ligand System	<u>111</u>
5.1 Intro	duction	111
5.1.1	The Implementation of the Carboxylate Functions in Ligand Design	111
5.1.2	Impact of Axial Ligand Variations on Catalyst Complexes	115
5.1.3	Targeted Design of the New Pyrazolate Bridged Dicarboxylate Ligand System and its Ruthenium Complexes	117
5.2 Synth	hesis of the Ligand and Complexes	120
5.3 Char	acterisation in Solution and Solid State	122
5.3.1	Complexes with Pyridine $(1^{COO}(X))$	122
5.3.2	Complexes with Isoquinoline $(2^{COO}(X))$	126
5.4 Generating the Catalyst		
5.5 Redo	ox Chemistry in Organic Solvents	132
5.6 Redo	ox Chemistry in Aqueous Solution	135
5.7 Cher	mical Water Oxidation Catalysis	139
5.7.1	The Catalysis Experiment	139
5.7.2	The Anation Effect	142
5.7.3	Species Analysis after Catalysis	143
5.8 Elect	trochemical Water Oxidation Catalysis	145

5.9 Oxidation of the Bridging Methanol to Formate under Ambient Conditions	1.47	
	147	
5.10Conclusion	150	
6 Résumé	<u>155</u>	
7 Experimental Part	163	
7.1 Materials and Instrumentation	163	
7.2 Synthesis of Ligands and Precursors		
7.3 Complex Synthesis	174	
Appendix	<u> 191</u>	
Crystallography	191	
Bibliography	197	
Abbreviations	207	
NMR Spectra of Ligands and Complexes	211	
ESI Mass Spectrometry of Ligands and Complexes	257	
Spectroelectrochemical Measurements	264	
Electrocatalytic Studies	265	
Overview of Compounds	267	
List of Scientific Contributions		
Acknowledgement	271	
Curriculum Vitae	273	