
1 Introduction

1.1 Motivation and objectives

The flows in the interior of planets, in the deep ocean and in the atmosphere are

complex and influenced by a large number of physical and chemical factors. To un-

derstand the influencing factors it is useful to constrain the investigation of the system

to certain partial aspects. Due to the complexity of the problem, the research then

concentrates just on the fundamental processes, rather than the exact replication of a

particular phenomena. A shell-model simplifies and scales the flow phenomena in the

interior of a planet between an inner core and an outer fixed crust. In our experimen-

tal study the shell globally rotates at angular velocity Ω. A further periodic oscillation

with angular velocity 0 ≤ ω ≤ 2Ω, a so-called longitudinal libration, is added to the

inner sphere’s rotation. The primary response is an inertial wave spawned at the crit-

ical latitudes on the inner sphere, and propagating throughout the shell along inclined

characteristics. For sufficiently large libration amplitudes the higher harmonics also

become important. Those harmonics whose frequencies are still less than 2Ω behave

as inertial waves themselves, propagating along their own characteristics. The steady

component of the flow consists of a prograde zonal jet on the cylinder tangent to

the inner sphere and parallel to the axis of rotation, which increases with decreasing

Ekman number. The jet becomes unstable for larger forcing amplitudes as can be

deduced from Particle Image Velocimetry (PIV) observations. Finally, a wave attrac-

tor is experimentally detected in the spherical shell as the pattern of largest variance.

These findings are reproduced in a 2D numerical investigation of the flow, and certain

aspects can be studied numerically in greater detail. One aspect is the scaling of the

width of the inertial shear layers and the width of the steady jet. Another is the par-

titioning of the kinetic energy between the forced wave, its harmonics, and the mean

flow. Finally, the numerical simulations allow for an investigation of instabilities, too

local to be found experimentally. For strong libration amplitudes the boundary layer

on the inner sphere becomes unstable, triggering localised Görtler vortices during

the prograde phase of the forcing. This instability is important for the transition to

turbulence of the spherical shell flow.

We study the aspects of flow structures in the rotating concentric spherical shell

experiment with main focus to the inertial waves. We visualize the waves and the wave

attractors in the experiment with quantitative measurement methods as PIV. Here the

research concentrates on the ability to locate the waves in the flow-field. Moreover, we

confirm already existing numerical results. The experiment provides the application of

the results to more recent numerical models, adjusted to the laboratory experiment.
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1 Introduction

In addition, the comparison between of experiment and the numerical simulations

provides the opportunity to verify the numerical code.

The second main objective in this thesis are the Laser Doppler Velocimetry mea-

surements (LDV) on wave attractors in the fluid-stratified tank experiment. Those

wave phenomena have been experimentally studied for about 15 years in a rotating

box and in rotating cylindrical gap, nevertheless, they are still not sufficiently ex-

plored. Laboratory experiments and numerical simulations will help to answer open

questions, e.g. on the scaling of internal shear layers and particle motion in the layers.

Here we do a first attempt to detect and measure these wave attractors via the LDV

technique. We investigate the velocity profile vertical to the attractor.

1.2 This Thesis

The thesis reports on two different wave motion aspects. On the one hand we focus on

the occurrences and measurements on wave attractors in a fluid-stratified tank exper-

iment with one sloping wall. On the other hand we investigate waves, their harmonics

and attractor in a rotating spherical shell experiment filled with homogenous fluid

and compare this with numerical simulations. The first chapter will give an outline

to various waves and their behavior in enclosed geometries. Here, we want to review

the relevant literature to inertial and gravity waves, both theoretical and experimen-

tal. In chapter 2 we describe the fundamental theory for rotating homogeneous flows.

Chapter 3 introduces at first the basics of stratified non-rotating fluids. Next we give

a description of the tank experiment and show the measured wave attractors with

Synthetic Schlieren technique and LDV. We also show a wave attractor in the spher-

ical shell by applying the Empirical Orthogonal Function (EOF) analysis. Chapter

4 will at first describe the spherical shell apparatus and the research methods Laser

Sheet illumination (LSI) and PIV. It will put the results of the observed waves in

the context of the experimental data and numerical simulations with respect to linear

solutions, higher harmonics and instabilities. Finally, chapter 5 will summarize this

thesis and discuss some speculative thoughts that might be followed in future works.

1.3 Waves in fluids

Wave phenomena are an important topic in modern and classical physics. Waves

propagating disturbances in gas and in liquid media. When a stone is thrown into

water a circular wave develops and this is an example of a propagating wave. However,

waves also occur by permanent excitation, such as the formation of surface water waves

due to strong wind. Waves transport momentum and deliver it locally. Hence, wave-
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1.3 Waves in fluids

driven mean flows occur. Waves depend on space and time and are characterized by

a periodic motion with a propagating wave energy. Particles in a fluid are deflected

from their rest position and are forced back to the initial position and overshoot. An

oscillation is the result of this repeated process.

Waves differ in deflection and propagation direction and the position of these two

axis. Hence they are transversal or longitudinal. Basically, there are three types of

waves, which are defined based on their restoring forces. In geophysical flows, like

surface water waves, gravity is the determinative restoring force, for sound waves, the

pressure gradient and for inertial waves (or gyroscopic waves) and Rossby waves the

Coriolis force. Furthermore, when Coriolis and gravity force act together, they are

called internal inertia-gravity waves. Inertial and gravity waves have a characteristic

’stratification’ necessary for their existence. Tab. 1.1 compiles the three wave types

in terms of oscillation plane, restoring force and stratification.

Table 1.1: The three types of waves in comparison among one another.

type of waves oscillation plane restoring force stratification

sound waves longitudinal pressure
gradient

-

gravity waves
(external/internal)

transverse buoyancy/
gravity

density

inertial waves/
Rossby waves

transverse inertia/
Coriolis force

angular
momentum

In rotating systems, waves play an essential role for the circulation on a planetary

scale, like in the atmosphere, in the oceans or in planets with a variety of flow struc-

tures. Therefore, flows in rotating, isothermal and homogeneous fluids in spherical

shells are interesting concerning their geophysical applications. Indeed, the whole

spectrum of rotational aspects and complexity, like wave motion, non-linear interac-

tions, internal boundary layers or different geometries are involved and they are the

subject of many numerical and experimental investigations.

Internal waves, in particular the inertial waves and their characteristic reflections

are the focus of this thesis. As mentioned before, there are two types of internal

waves, which are important for geophysical motions, the gravity waves and the inertial

waves. Both have their maximum amplitude inside the fluid. They occur in density

stratified fluids, in rotating fluids and in combinations of both cases. The presented

gap experiment used in this work allows to investigate inertial waves in spherical

shell geometry. It provides the detection of waves inside the fluid regarding both,

experimental and numerical investigations. Since there are sparse experimental studies
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of this phenomenon in a spherical geometry, it shall contribute to the understanding

of excitation and formation of internal waves for this particular case.

1.4 Gravity waves

Gravity waves occur as external and internal wave motion. The oscillating plane is

perpendicular to the phase speed, the wave is transversal. In both wave motions, the

gravity and buoyancy respectively in a stable stratified fluid have the main influence in

the generation of such waves. Thereby in the stable case, the fluid with higher density

is below the one with lower density. External gravity waves, for example surface waves

between water and air, have a high density contrast. One formation mechanism of

surface waves can be the Kelvin-Helmoltz instability, where small disturbances in the

shear layer of two fluids with different velocities can grow. In contrast, internal gravity

waves are inside a density stratified fluid that cannot be mixed easily. An example

is the non-stirring of water and oil. Usually, internal waves have larger amplitudes,

smaller phase velocities and longer periods than surface gravity waves at the same

forcing due to their smaller ’density contrast’.

When a fluid particle is deflected in the vertical plane, an oscillation occurs. The

wave propagates along the interface between the two fluids. The free surface of the

upper layer moves marginally, because the amplitude decreases beyond the interface.

Hence, gravity waves have their maximum amplitude inside the system.

Let us now focus on the continuously stratified case. The deflected particles in the

stable stratified fluid oscillate vertically with the so called Brunt-Väisälä-frequency

(N) around their rest position. It depends on the gravity g, the density gradient of

the stratification � in the z direction against the gravity and reads

N2 = − g

�0

d�

dz
, (1.1)

where �0 is the constant mean density. For stable stratification in an incompressible

fluid, the 2D dispersion relation reads

ω2 = N2k
2
x

k̂2
= N2 k2

x

k2
x + k2

z

and in polar coordinate notation ω2 = N2cos2 θ (1.2)

and describes the relation between the frequency ω and the wave number k̂ = k2
x+k2

z .

The θ denotes the angle between the horizontal and the wave vector �k = (kx, kz). It

is important to note, that for external gravity waves usually ω2 > N2, whereas for

internal gravity waves ω2 < N2 holds.
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1.5 Inertial waves

Despite with no sharp density changes gravity waves propagate obliquely through

the fluid instead of horizontally along the interface (Manders, 2003) like the thermo-

cline in the ocean (Pichler, 1997). They have the character of interfacial waves since

they occur at the thermocline that separates the low density surface water from the

deep ocean. Internal waves can propagate over a long distance and can be observed

hundreds of kilometers away from their disturbance source. More examples for inter-

nal gravity waves in nature are the so called lee waves. They act in the atmosphere

on the leeward side of mountains and propagate vertically.

1.5 Inertial waves

The rotation in inviscid, homogeneous and isothermal fluids causes a stable and con-

tinuous radial angular momentum stratification in the system. Specified disturbances

generate waves similar to internal gravity waves. This analogy between rotation and

stratification is discussed by many authors, e.g. Veronis (1970). In contrast to gravity

waves, inertial waves are three-dimensional with deflected oscillating particles. A par-

ticle deflected from its initial position has a different velocity as solid-body rotation.

Due to the conservation of angular momentum, the azimuthal velocity at the new

particle’s position might be lower or higher than the velocity to the rotating system

(depending on the displacement). For this new velocity, the centrifugal force at the

deflected position does not balance the pressure gradient. The particle experiences a

restoring force, namely for rotating systems the Coriolis force.

On a horizontal plane rotating with Ω the horizontally displaced particle oscillates

anticyclonically along circles in the opposite to the background rotation with frequency

2Ω. In contrast, in 3D the resulting wave is called inertial wave (Greenspan, 1990;

Cushman-Roisin, 1994; Pedlosky, 2003) or gyroscopic wave (LeBlond and Mysak,

1978) and it can propagate through the fluid with frequency 0 < ω < 2Ω.

The distinctive behavior is in its anisotropic dispersion, the energy propagation

is normal to the phase velocity and causes specific reflections on solid boundaries

(Phillips, 1963; Lighthill, 1978). The wave propagates with an angle θ = cos−1(ω/2Ω)

to the rotation axes, whereas the energy propagates normal to the wave vector �k.

Fig. 1.1 a) shows the velocity �u and the acceleration d�u/dt in an oblique plane, per-

pendicular to �k with a pressure gradient parallel to �k. The anisotropy dispersion

depends on the frequency of the disturbance. The dispersion relation, the relation

between the phase velocity and the wave length, is written as

ω = ±2�Ω · �k
|�k| = ±2

Ωxkx + Ωyky + Ωzkz
(k2

x + k2
y + k2

z)
1/2

and in polar coordinate notation ω = ±2Ω cos θ.
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1 Introduction

(a) (b)

Figure 1.1: (a) ’Coriolis force and pressure gradient experienced by a fluid particle in cir-
cular translation with pulsation σ in a frame rotating at angular velocity Ω
about the vertical axis. The velocity u and the acceleration du/dt lie in an
oblique plane, normal to the wavevector k making angle θ = cos−1(ω/2Ω) to
the rotation axis (here u is chosen normal to Ω). (b) Three planes of constant
phase 0, π/4, π/2 (corresponding to 1/4 wavelength), normal to k, emphasiz-
ing the circularly polarized transverse wave and the shearing motion between
planes. The phase velocity is along k, showing that the circular translation is
anticyclonic.’ Figure and caption taken from Messio et al. (2008).

Note, here the angle θ has a different meaning as in Eq. (1.2). But the dispersion

relation of (internal) waves in stratified fluids and inertial waves in rotating fluids is of

the same form. Therewith, the properties of waves in a stratified fluid are comparable

to the inertial waves in a homogeneous fluid.

Due to the Coriolis force and the pressure gradient, the particles move in circles

around the �k vector with frequency ω. Fig. 1.1 b) illustrates, for constant phase, the

circularly polarized traveling wave and the motion of shear between the planes with

an anticyclonic phase velocity (Phillips, 1963; Messio et al., 2008). Note, due to Ωx =

Ωy = 0 in the illustration of Fig. 1.1, following formula applies ω = ±2 Ωzkz
(k2x+k2y+k2z)

1/2 .

More precisely, Fig. 1.2 a) and b) show the wave propagating in a slowly oscillating

wavepacket as a double cone with angle θg with respect to the rotation axes (Messio

et al., 2008). In the interior of the cone layer the fluid is oscillating, whereas it is at rest

outside. At this, the size of the source, here marked as l, determines the wavelength
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1.5 Inertial waves

(a) ω << 2Ω (b) ω ∼ 2Ω

Figure 1.2: Sketch of the cones of inertial waves with increasing frequency ω. Both are
forced by oscillating disturbance of size l a and show the upper half cone.
Trough and crest in the conical wave packet are illustrated as solid and dashed
lines. a) A small oscillation much lower than 2Ω b) Stronger forcing nearly up
to angular velocity 2Ω. (Messio et al., 2008)

and the thickness of the cone in the absence of the viscosity. With increasing ω the

cone opens up (1.2 b) with changing the direction of the group velocity cg (Pedlosky,

2003). Hence, for w ∼ 2Ω the wavepacket propagates perpendicular to the rotation

axis and the group velocity drops to zero. A stationary planar wavepacket results and

the particles circulate horizontal at the frequency 2Ω.

Inertial waves can be distinguished as global (contained) or local waves (short wave-

length approximation), depending on how large the wavelength is compared to the

container size (Messio et al., 2008). They are important for natural flow motions in

the oceans (van Haren and Millot, 2004), the atmosphere (Pedlosky, 2003), liquid

cores of planets (Aldridge and Lumb, 1987) or in rotating stars, where the density

stratification is weak. In the Earth’s atmosphere, inertial waves occur in the form of

inertia-gravity waves. Inertial waves are induced by an oscillating homogeneous forc-

ing, like for the ocean tides, or by the temporary variation of the background rotation

vector, as for the precessing Earth core (Aldridge and Lumb, 1987). These authors

claim that inertial waves are detected in the liquid outer core after large, deep earth-

quakes. These waves propagate through the fluid as plane waves along rays and show

properties of optical waves (Lighthill, 1978; Phillips, 1963). Though, experiments in
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a finite container filled with inviscid fluid, the provided local waves show also a global

behavior due to pattern formation of interference between multiple reflected waves

(Messio et al., 2008).

Inertial waves also play a role in the magnetic field of the Earth, since the outer

core consists of electromagnetic fluid (Malkus, 1968). The characteristics of the flow

motions are also interesting for industrial applications, like in the spacecraft. The

space vehicle typically spins around one of its axes during their flight. A fluid-filled

tank stabilizes the rotation. Inertial waves may not allow the vehicle to become

unstable (Manasseh, 1993).

In 1880, Lord Kelvin (Thomson, 1880) established the investigation of inertial

modes, when he considered the vibration of a cylindrical columnar vortex at spe-

cific frequencies. Thereafter Bryan (1889) described the analytical solution for iner-

tial waves in a spheroid. The first experimental investigations on inertial waves and

their characteristic frequencies, depending on geometries of the systems, have been

in cylindrical apparatuses by Oser (1958), Fultz (1959), McEwan (1970), Ito et al.

(1984), Manasseh (1996) and Duguet (2006). Recent experimental studies on inertial

waves for cylindrical geometry are given in Messio et al. (2008). Investigations for

the spherical geometry are given in Aldridge and Toomre (1969) for the full sphere

and in Aldridge (1972) for the spherical shell. A steady precession spheroid is inves-

tigated by Malkus (1968) and a cone geometry by Beardsley (1970). Features related

to wave propagation are detected by Maas (2001) and Manders and Maas (2003) in a

rectangular basin with one sloping boundary.

Additionally, recent investigations on inertial waves excitation underline the neces-

sity of further research. Cortet et al. (2010) force inertial waves by a thin oscillating

cylinder in a rotating box that generates two-dimensional cross-shaped wave beams

and they discuss the viscous spreading of these wave beams. These results are compa-

tible with the solutions of Thomas and Stevenson (1972) for internal waves. Rapidly

towing grid-generated turbulence in a rotating tank is investigated by Lamriben et al.

(2011). They show a good agreement with the numerical simulations by Maas (2003).

The attention of Matsui et al. (2011) is an electrically conducted fluid in a spherical

shell under the influence of waves and turbulence on the large-scale flow. Triana (2011)

and Zimmerman et al. (2011) worked with this spherical annulus, too. Triana (2011)

is interested in the water-filled shell with precessionally forced flow and spin-over iner-

tial modes at differentially rotation of the inner sphere. In contrast, Zimmerman et al.

(2011) work with molten sodium metal at low Ekman numbers to measure the hy-

drodynamic turbulence and the turbulent scaling of the torque on the inner spherical

shell. Bordes et al. (2012) show measurements of inertial waves by using oscillating
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1.5 Inertial waves

stacked plates in a rotating water tank. They show the excitation of two secondary

plane waves, since the primary plane wave is subjected to a subharmonic instability.

In addition to the limited experimental investigations, the numerical studies provide

a wide range of parameters. In 1889, Bryan (1889) solved the equations for the inertial

modes of standing waves in a sphere. In contrast, Stewartson and Rickard (1969)

are interested in the pathological nature of contained inertial modes in a spherical

shell. Regarding to this work, Tilgner (1999) excites different inertia modes with

varying frequencies in his numerical model. He shows the geometrical influence and

importance of the fluid behavior and attractors. By decreasing the radius of the inner

sphere, the number of attractors decreases and vanish for the full sphere. Later he

shows that a zonal flow can be excited by the interaction of inertial waves (Tilgner,

2007). Numerical simulations of inertial waves in a spherical shell at low Ekman

number were done by Simkanin et al. (2010). They show the nonlinear interaction in

dependence of the Ekman number for global flows.

Stewartson layer

In rotating, oscillating and librating shells, shear layers, Ekman layer and Stewartson

layer occur. They exists in the interior of the fluid or near the boundaries. For

spherical shells the Stewartson layer describes the cylindrical shear layer tangential

along the inner sphere in a differential rotating system. There the inner sphere rotates

with higher velocity than the outer sphere. This tangent cylinder is parallel and

axisymmetric to the rotation axes and is separated into three layers with different

widths, see Fig. 1.3 b). The higher the rotation rate, the lower is the Ekman number

and the thinner is the Stewartson layer.

An overview of different studies of the Stewartson layer in differential rotating

systems is given by Hollerbach (2003). The inviscid case is given in the work of

Kerswell (1995) and Hollerbach and Kerswell (1995), who study the conical shear

layers arising from the critical latitudes. They show further, that internal shear layer

are tangential to the boundary layers at the critical latitude. The authors determine

the scaling in the interior of the fluid. Also Stewartson (1966), Hollerbach (1994),

Hollerbach (2003), Hollerbach et al. (2004) and Fotheringham and Hollerbach (1998)

work on the scaling and proof some results. Detailed solutions that include viscosity

are solved by Rieutord and Valdettaro (1997), Rieutord (2001) and Rieutord and

Valdettaro (2010). Fig. 1.4 shows the formation of internal shear layers and the

velocity field with the length scale in terms of the Ekman number. At the known

critical latitude for the spherical shell, marked as blue dots in Fig. 1.4, the thickness

of the Ekman layer increases locally (Greenspan, 1990). At the critical latitude of 0◦
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(a) (b)

Figure 1.3: Stewartson layer in differential rotating spherical shell: a) cylindrical shear
layer formation tangential to the inner sphere along Z, b) separated Ekman
layers with their different widths (after Stewartson (1966)).

the Ekman layer is stationary in this equatorial region. In the oscillating mode 0 to

2Ω the critical latitude shift from the equatorial region up- and downwards, depending

on the forcing frequency.

Ekman layer

Another characteristic in rotating fluids is the occurrence of Ekman layers. It’s a

boundary layer between geostrophic flow and its viscous (no-slip) closure. It shows

also different layers in between, like the Stewartson layer, see Fig. 1.3 (b). For the

velocities, no-slip boundary conditions hold within this boundary layer, that takes

friction effects into account. The Ekman layer is present below the geostrophic wind

and takes up the main part of the atmospheric boundary layer over 2000 meters. To

form an Ekman layer the system has to rotate, so the Coriolis force (N�Ω×�u) changes

the direction of the flow, proportionally to the magnitude of the velocity, also called

Ekman spiral. Above this layer a laminar flow almost prevails, where pressure force

and Coriolis force dominate the flow motion. Detailed description of the atmospheric

layer, particular the Ekman layer is given in Cushman-Roisin (1994); Malberg (2007);

Etling (2008); Klose (2008). For theoretical investigations on the Ekman layer e.g.
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1.5 Inertial waves

Figure 1.4: Velocity field and length scale in orders of the Ekman number of internal
shear layers in a rotating spherical shell, where the background velocity field
is O(Ek1/2). The bulge at the inner and outer denotes the critical latitude
(figure from Kerswell (1995)).
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