Laura Maria Feldmar (Autor)

Testing the Limits of the Cyrogenic Nucleation Pulse Chamber

TESTING THE LIMITS OF THE
CRYOGENIC NUCLEATION PULSE CHAMBER

Laura Maria Feldmar

https://cuvillier.de/de/shop/publications/7188

Copyright:
Cuvillier Verlag, Inhaberin Annette Jentzsch-Cuvillier, Nonnenstieg 8, 37075 Göttingen, Germany
Telefon: +49 (0)551 54724-0, E-Mail: info@cuvillier.de, Website: https://cuvillier.de
Contents

1 Introduction ... 1
 1.1 Nucleation phenomena 1
 1.2 Literature overview 3
 1.3 Overview of available data 6
 1.3.1 Water 6
 1.3.2 Argon 7
 1.3.3 Nucleation onsets of nitrogen 8
 1.3.4 Growth rates 9
 1.4 Task description 10

2 Theory .. 12
 2.1 Nucleation theory 12
 2.2 Other nucleation theories 15
 2.2.1 Nucleation theory according to Girshick and Chiu 15
 2.2.2 Classical nucleation theory according to Reiss, Kegel and Katz 16
 2.2.3 Density functional theory 17
 2.3 Nucleation theorem 17
 2.4 Semi-empirical approaches 18
 2.5 Droplet growth theory 19
 2.5.1 Mass flow in the Continuum Regime 19
 2.5.2 Mass flow in the Free molecule regime 21
 2.5.3 Mass flow in the transition regime 23
 2.6 Heat flow ... 24
 2.6.1 Heat flow in the continuum regime 24
2.6.2 Heat flow in the free molecule regime 24
2.6.3 Heat flow in the transition regime 24

3 Experiment
3.1 The Cryogenic Nucleation Pulse Chamber 26
 3.1.1 Gas mixing system 26
 3.1.2 Nucleation pulse chamber 27
3.2 Room temperature experiments 29
3.3 Detection system 33
3.4 Data Analysis ... 36
 3.4.1 Finding the onset conditions 36
 3.4.2 Finding the number of particles 38
3.5 Determining the growth rate of a cluster 38
3.6 Modelling the droplet growth 41
 3.6.1 System temperature during and after the growth process ... 41
 3.6.2 Droplet radius at the end of the growth process 44
 3.6.3 Calculating droplet growth curves 45

4 Results
4.1 Homogeneous nucleation rates of water 47
4.2 Argon .. 57
4.3 Nitrogen ... 68
4.4 Comparison with literature data 68
4.5 Growth rates .. 69
4.6 Comparison between theory and experiment 74
 4.6.1 Scattered light signal 80
4.7 Including the expansion temperature 83
 4.7.1 Supersaturation during the growth process 86
4.8 Pure nitrogen ... 88

5 Summary

6 Outlook

7 Appendix
 7.1 General constants and formulae 96
 7.2 Thermophysical properties of helium 96
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.3</td>
<td>Thermophysical properties of water</td>
<td>96</td>
</tr>
<tr>
<td>7.4</td>
<td>Thermophysical properties of argon</td>
<td>97</td>
</tr>
<tr>
<td>7.5</td>
<td>Thermophysical properties of nitrogen</td>
<td>97</td>
</tr>
<tr>
<td>7.6</td>
<td>Nucleation rates of water</td>
<td>99</td>
</tr>
<tr>
<td>7.7</td>
<td>Argon nucleation rates</td>
<td>106</td>
</tr>
<tr>
<td>7.8</td>
<td>Nitrogen growth rates</td>
<td>107</td>
</tr>
<tr>
<td>7.8.1</td>
<td>52 K</td>
<td>107</td>
</tr>
<tr>
<td>7.8.2</td>
<td>54 K</td>
<td>110</td>
</tr>
<tr>
<td>7.8.3</td>
<td>56.5 K</td>
<td>112</td>
</tr>
<tr>
<td>7.8.4</td>
<td>56.7 K</td>
<td></td>
</tr>
<tr>
<td>7.9</td>
<td>List of symbols and abbreviations</td>
<td>114</td>
</tr>
</tbody>
</table>