
CHAPTER 1

Introduction

1.1 Motivation

Embedded systems have penetrated our daily life without many of us
noticing, by that blurring what we mean by an embedded system. Our
day-to-day routine gets into contact with computer systems in all aspects,
and some of these daily encounters depend on the correctness of embedded
computers. Modern, public transportation systems offer a fully automated,
unattended train operation which is capable of handling starting, stopping,
door operation as well as emergency situations. Similarly, modern cars are
equipped with semi-automatic driver assistance features and it is only a
matter of time until autonomous driving will be the common case.

Medical devices such as wearable health technology are predicted to
revolutionize medical care. Gadgets for medical therapy, sports, or just
every-day fitness are capable to track brainwaves, heart rate, blood glucose
level, sleep pattern, and more. Wearable devices cannot only be used to
monitor and track but also to regulate for instance inject medication or
stimulate nerve cells. It is predicted that by end of 2016 more than 100
million wearable medical devices are sold per year. The market for fitness
related products will reach 80 million units by then.

In the context of embedded systems, safety critical systems play an
important role in medical care, commercial aircraft, nuclear power, and
weapons [153]. There are many different definitions of what safety critical
precisely means. A customary meaning is given in [153] which encompasses

“systems whose failure might endanger human life, lead to
substantial economic loss or cause extensive environmental
damage.”
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This is consistent with most readers intuition, which account railway
signaling systems, flight control systems as well as steer by wire as safety
critical. However, a more general definition is also given by [153] which
matches the one of [13] which is based on the notion of consequences.

“If the failure of a system could lead to consequences that are de-
termined to be unacceptable, then the system is safety-critical.”

Traditionally, safety critical systems were closed, self-contained comput-
ers systems with very limited interface to its environment. This includes
systems such as the Ariane 5 rocket of which a crash can result in a fi-
nancial loss of more than US$ 370 million (Cluster spacecraft incident)
as well as the Boeing 777 which is equipped with several computerized
systems which replaced most of the traditional mechanical and hydraulic
equipment. A report by the National Transportation Safety Board to the
Federal Aviation Administration (FAA) [235] describes serious problems
with the glass cockpit displays which replaced the traditional analog dials
and gauges. These problems have led to at least 50 in-flight incidents,
some of these causing the pilots to panic due to blank displays and lost
communication. Such a failure can result in the death of hundreds of
passengers.

However, recently a new specimen of non-traditional safety-critical
systems has emerged. Such systems are not directly linked to catastrophic
hazards, but may indirectly cause them. Nowadays, the cellular phone
network does not only provide a convenient way to communicate with each
other, but is also the backbone for emergency service (i.e. 112/911). In most
countries the cellular network serves a dual use: it is used to signal an
emergency to authorities as well by the authorities themselves, mainly to
coordinate the operation. The importance of the cellular infrastructure
for the greater public good (saving lives, preventing fires, etc.) elevates
the former convenience technology to a safety-critical level. Other non-
traditional sectors include banking, (non-nuclear) electricity generation,
management of water systems (i.e. desalination).

1.2 The Role of Safety Standards

In the last years, we saw a strong trend towards standardization of the
entire safety life cycle. Traditional quality assurance and process manage-
ment guidelines such as ISO 15504 / SPICE [139] or ISO 9001 [138] are
not suitable for the development process of safety critical systems.

This is already known from the conservative avionics industry, in which
software must be developed and tested according to the domain specific stan-
dard DO-178b [224] and hardware components according to DO-254 [223].
The final aircraft will only achieve FAA approval (Type Certificate), if the
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Figure 1.1: If the risk is not tolerable, additional measures such as fault-
tolerance must be applied.

rules and processes of the required standards are obeyed. A similar pro-
cess is compulsory for industrial plants such as power plants and heavy
machinery [135].

Interestingly, such standards are rather new to the automotive domain
and were not introduced prior to 2011. This has two reasons: Firstly be-
cause the consequences of a car crash are mostly considered as benign
compared to a plane crash and secondly, because automotive manufactur-
ers were keen to provide very high quality products to prevent liability
issues. This changed with the introduction of the ISO 26262 [136] which
is loosely based on its industrial counterpart IEC 61508. However, there
are some differences. IEC 61508 is targeted towards equipment produced
in low quantities, where ISO 26262 addresses volume production of the
automotive market. Since then, industry puts a tremendous effort into
developing a safety culture around their products.

The concept around ISO 26262 is based on risk and, as previously
explained, safety is defined as the absence of unreasonable risk. Although
the concept of risk seems to be very obvious, it is rather complicated to asses
and systematically biased by the limitation of the human mind. The human
mind tends to apply simple heuristics when risk is assessed. People are
bias towards recent news and experiences which leads to a cognitive bias
towards these events. This is called availability heuristic [277]. In order
to systematically assess risk, the combination of likelihood of occurrence
and the severity of the harm of a hazard must be considered. The risk is
tolerable if society can accept it and safety standards guide the designer to
determine and quantify the acceptance.

Figure 1.1 shows the typical case for a safety critical system. After a
particular function is evaluated according to the guidelines dictated by
the standard, it is evident that the risk is non-tolerable. This can be the
case if standard implementations such as commercial of the shelf (COTS)
hardware or software are too error prone. Thus, the actual risk which
emanates from the function must be reduced by applying further measures
covered for instance by using a different technology or fault tolerance
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approaches. Any deployed function which is integrated in a larger system
obviously still exhibits a residual risk - but safety standards guarantee
that this risk remains below a tolerable threshold.

Now, it is interesting to know the additional effort required to be com-
pliant with the state of the art safety standards, their methods and pro-
cesses [244].

• Generally, risk dictates effort.

• Comparison with reference products is required.

• Assessment of known information and data must be carried out.

• Additional research is required for novel features with high risk which
do not origin from previously used ancestor technology.

When designing a traditional safety critical system, the entire system
context must be known. This includes the platform architecture, deployed
software modules and their interaction as well as the physical boundary
conditions such as worst-case environmental conditions (i.e. vibration,
temperature and other stress).

1.3 Development Process for Safety-Critical Systems

To handle and master a successful safety critical embedded system, an
appropriate development process is mandatory [123]. The automotive
industry, especially in Germany, typically applies the V-Model [2, 247, 136].

The V-Model separates the design and specification from implementation
and testing as shown in Figure 1.2. Safety standards such as the ISO 26262
have refined the V-Model and incorporated the safety requirements and
safety verification into the process. This ensures traceable level of design
complexity and intrinsically produces the required assurance level required
by the certification agency.

Contrarily to the standard V-Model as described in [2], the V-Model
as used in ISO 26262 starts with a safety assessment as a starting point.
Here safety functions are identified, the risk is assessed and a high level
functional safety concept is produced. The safety concept is formalized as
a safety requirements specification which is later used for the functional
safety assessment, to validate whether the final system satisfies all safety
concerns. This typically involves a Fault Tree Analysis (FTA) [134], which
is a top-down failure analysis that reveals the root cause for undesirable or
catastrophic events which can be linked to the system under design [171].

In the system design step, the system architecture is specified and
broken down into components with specified interfaces. This includes the
hardware architecture such as communication and processing platforms
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Figure 1.2: Simplified V-Model according to ISO 26262 [136].

as well as the high level software architecture. Here, safety standards
recommend to capture a consistent set of requirements for instance by using
Controlled Requirements Expression (CORE)[188]. Furthermore, tools,
models and languages to reflect functional and non-functional behavior
are strongly advised (e.g. MARTE[203], MATLAB / Simulink, AADL[238],
SysML[204]).

In the component design process, individual components are broken
down into function blocks which are later implemented by a programmer or
hardware designer (bottom of Figure 1.2). For the hardware and software
specification, ISO 26262 demands a continuous evaluation on the impact on
safety. For instance, once the hardware platform is known, fault injection
tests and further reliability tests should be carried out. Otherwise, there
is an unknown risk of exceeding the reliability threshold and missing the
safety goals. These failure tests are performed inline with test automation
such as hardware-in-the-loop (HIL) tests, rest-bus simulations.

The right branch of the V-Model, Integration & Test, is responsible to
verify and test the implemented functions and components against the
specification. Naturally, this includes the error-free behavior as well as the
service in case of errors. When the final safety validation step is completed
successfully, the system can be released for production.

As shown in Figure 1.2, the component design and implementation is
usually performed by the suppliers. To ease this transition step, the auto-
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motive industry has standardized to automotive software and operating
system interfaces in scope of the Automotive Open Systems Architecture
(AUTOSAR) [12]. The concept of AUTOSAR is to focus on portability, com-
posability and extendability where possible. Here AUTOSAR specifies a
Runtime Environment which provides platform as well as communication
abstraction for applications [116]. It implements well defined interfaces to
connect external communication interfaces such as FLEXRAY, Controller
Area Network, Ethernet and others.

AUTOSAR follows a component based design approach in which func-
tions are encapsulated in AUTOSAR Software Components (SW-C). These
components have well defined interfaces according to a standard description
format. Software components are connected to a virtual function bus which
abstracts the physical communication technology and allows application
agnostic message passing. This allows an easy cut of system functionality
into components without large overhead while maintaining a high degree
of flexibility.

1.4 Trends

The industry impact of embedded systems has increased during the last
decades and this trend is predicted to continue. The reason for this is
that embedded computing and electronics are the main driver for features
and the key for product differentiation. According to [217], the embedded
systems market will reach a e1.5 trillion in revenue by 2015. The most
important market segments measured by their compound annual growth
rate (CAGR) are energy (45.4%), communications (13.2%), automotive
(12.2%) as well as healthcare (11.4%). Interestingly the growth of consumer
products is predicted to be only 6.2%. This highlights the importance of the
special requirements and constraints of highly specialized domains with
unique constraints such as low energy, low cost, ultra-high reliability, hard
real-time under extreme environmental conditions. These market segments
have to tackle the following new challenges to continue successfully their
growth.

1.4.1 Architecture Complexity Challenge
There is a rapid technology advancement which enables the designer to
add more and more features and functionality to the system. As a conse-
quence, the size and complexity grows exponentially. This problem is likely
getting worse, if the additional complexity cannot be conquered by composi-
tional model-based design processes. Generally, there are two orthogonal
dimensions to the complexity challenge: architecture as well as software
complexity. The software complexity for a system in the automotive domain
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Figure 1.3: Amount of certified software code and the associated cost.
(Source [285])

increased by two orders of magnitude (106 to 108 object instructions) in only
10 years which is comparable to the growth of the linux kernel during the
same timespan [83]. A similar trend can be observed in the avionics indus-
try [285], where the code size roughly doubles every year. It was estimated
that by 2008 the associated costs including certification according to safety
standards exceed a $ 7.8 billion threshold. This is assumed to be the afford-
ability limit, software which exceeds 17 million lines of code is predicted
to be uneconomical for aircraft designs. A modern A380 aircraft already
has 100 million lines of code [287]. Handling this enormous complexity was
only possible by applying formal methods such as model checking, model
driven engineering on platform level as well as a compositional analysis
on system level. Also standardized and modular software architectures
ease the design process. Examples for such frameworks are AUTOSAR [12]
used in the automotive domain as well as ARINC 653 [6] which is used in
avionics.

Also the hardware platforms become more and more powerful. This ad-
vancement has boosted the data rate and processing performance required
for today’s and tomorrow’s advanced driver assistance. Typical examples
are in-vehicle navigation systems, adaptive cruise control and sophisticated
camera-based precrash detection systems. The integration of multiple
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processing elements allows to reduce the frequency, thus power and temper-
ature and are an attractive design target for all computing domains. At first
glance, this sounds promising as it enables the integration of tremendous
complexity in the first place. The vast number of cores can potentially be
used to integrate and partially isolate different functionality on such a plat-
form. However, there is a downside: Processing elements found on multi- as
well as many-core architectures share many common resources such as the
communication infrastructure, caches, memory controllers and I/O ports.
An example for a modern multi-core architecture is shown in Figure 1.4,
a switch fabric connects all cores to shared DMA units, shared platform
cache, a single DDR3 memory controller and various peripherals. This
causes an easily overlooked entanglement of the timing and performance
for the applications running on the platform [159]. Obviously, this inhibits
a straight forward compositional consideration and leads to additional com-
plexity during the verification stage. Compared to traditional architectures,
the behavior of multi-core designs seems unpredictable and afflicted with
complex to grasp timing anomalies. Therefore, traditional design processes
are not applicable to multi- and many-core designs. Also, recent research
has shown that the real-time performance of multi-core architectures does
not necessarily outperform traditional single core designs [27] in all cases.
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1.4.2 Cyber-Physical Systems Challenge
Most systems that we know today such as traffic control, health care,
automotive safety, smart power grids, defense systems, environmental
control and manufacturing have a tight coupling of computing and the
networking infrastructure with physical processes. These systems are
an integral part of the feedback loop where the physical processes affect
computations and the other way around [169]. Sometime in 2008, the
name cyber-physical system (CPS) was coined and serious research in this
domain just started a couple of years ago.

In the physical world, the passage of time is inevitable and processes
(e.g. mechanical, chemical) are concurrent by nature. Contrarily to the
physical world, computation and communication models are intrinsically
sequential and lack the proper abstraction. Timing and predictability was
often neglected in computer science as pipeline design, caches and compiler
design was tweaked to optimize the average-case performance (“make the
common case fast”).

A new level of abstraction must be found [26] which effectively com-
bines computational models with models of the physical process to properly
capture mutual dependencies. Here, traditional software component tech-
nologies failed as they are too software centristic. This includes operating
system design, object oriented programming and service oriented architec-
tures, because they abstract away important part of the system behavior
(i.e. timing) as they try to focus only on the functional aspect of component
design.

1.4.3 System of Systems Challenge
As discussed, new markets emerged such as smart electricity and water
meters used for monitoring which will boost the sales of low-power, low-cost
hardware. The next step is to combine embedded systems in a large scale
global network of data and services. This leads to a new situation [60]:
Systems of Systems (SoS) with a world of high computing density and
drastically increased data rates and traffic volumes. There is no generally
accepted definition for Systems of Systems. However, it is common ground
that SoS are

“themselves comprised of multiple autonomous embedded com-
plex systems that can be diverse in technology, context, opera-
tion, geography and conceptual frame.” [149].

An example for a typical SoS is the Coast Guard Deepwater Program
[206] which is a 25 year program that connects recovery aircrafts, patrol
boats, unmanned aerial vehicles with ground stations such as command,
control and intelligence to replace almost all of today’s US Coast Guard’s

9
Dieses Werk ist copyrightgeschützt und darf in keiner Form vervielfältigt werden noch an Dritte weitergegeben werden. 

Es gilt nur für den persönlichen Gebrauch.



1. INTRODUCTION

equipment. Other examples are FAA Air Traffic Management, Army Future
Combat Systems, intelligent transport systems as well as Robotic Colonies.

In scope of the United States national space program new System of
Systems engineering models and frameworks were proposed [65], which
are now being adopted for non-defence related projects. These frameworks
do not only account for the technological challenges but also consider the
political, social and economic factors. SoS ultimately lead to heterogeneous,
distributed architectures and it remains to be seen if such complex systems
can be still be realized, validated and handled, if this trend continues.

1.4.4 Adaptability and Software Evolution Challenge
Today, a typical automotive vehicle design comprises many electronic con-
trol units each implementing distinct functionality (e.g. anti-lock braking
unit, traction control system, emergency break assist). An upgrade of
functionality is only possible through facelift upgrading or a completely
new car design. Upgrading an deployed car is cumbersome and expensive:
For example, the latest engine management configuration cannot be inte-
grated without an expensive recall. On the other hand, customers have
high expectations with respect to the in-vehicle infotainment system. They
are used to the update cycle of entertainment products in the order of a
few month. Google deploys major updates for their smartphone operating
system Android every six to nine months where automotive entertainment
software is never updated at all unless the customer decides to buy a new
car, typically after five to six years.

Also, there is a paradigm shift towards software and network centric
automotive design. New features in the automotive industry are mostly
software driven and could be retrofitted into legacy cars. Such an “app
store” opens up a totally new business model for OEMs and dealers.

However, the concept of software adaptability and evolution is not com-
pletely new [88]. But it has never been considered in the context of em-
bedded as well as cyber physical system, where adaptability is inevitably
linked with two conceptual problems: The first challenge is the competition
of applications for resources. New applications share the same platform,
this includes the communication infrastructure such as busses and switches
as well as processors and memory. And the second challenge is the impact
of platform and architecture change. If new hardware is added (i.e. a head
up display is added to the system), other devices must be aware of the new
functionality (i.e. for signal routing and configuration).

Both effects tightly couple legacy and new functionality. This is ex-
tremely problematic in domains where safety, security and availability
are key constraints as such properties cannot easily be guaranteed after
platform or software changes. Especially when new functionality cannot be
trusted because it is developed by an unknown supplier. Novel mechanisms
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which must be provided at design time must guarantee sufficient isolation,
while not sacrificing flexibility and performance. Examples for such dy-
namic methods are load balancing, integration of quality of service and
dynamic resource management [5]. Additionally these approaches must
be integrated to provide feedback-based resource scheduling, middleware
support for dynamic updates and new dynamic models which can be used
for on-line verification. Otherwise integrity cannot be preserved and new
subsystems cannot be admitted.

1.4.5 Resiliency Challenge
Continuous growth of complexity always reflects on the reliability of a
system caused by nature of statistics. Interestingly, this is not a new
phenomenon in computer technology. In the past, the cause for faults used
to be the manufacturing and development process that impacted the quality
of a product. This was tackled by testing the circuits and sorting out bad
ones. Also the environment in which the device is operated affects the
reliability. For instance, the soft-error rate increases with altitude. Future
semiconductor devices will face new challenges [43, 36]:

• Transistor variability

• Device degradation

• Sensitivity to ionizing rays and particles

This leads to reliability problems of modern and future silicon devices
which is illustrated in Figure 1.5. The graph shows the quality (i.e. speed
grade) of a silicon gate over the time. Each dot represents an instance of the
gate over time. After manufacturing, some devices are faster than others
due to process variability. Thus, some gates are beyond the acceptable
quality threshold (red area). Over time, aging effects lead to consistent
decrease of performance. After some time, the gate operates out of the
specified operating conditions. Also spontaneous, transient effects can occur
(e.g. caused by negative-bias temperature instability). Generally, these
effects are inherent to the silicon process and already existed in previous
generations. However, in next generation devices these characteristics will
appear much more pronounced.

The size of a transistor will, if the trend continues, decrease further -
even beyond todays (2014) 22 nm technology node. At this stage, various
effects become noticeable [184]. The feature sizes will be so small that
different dopant areas will be separated by only a few atom layers. This
causes dopant fluctuation which comes from the discreteness of dopant
atoms in the transistor channel. Thus, because the law of large numbers
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