
Chapter 1

Introduction

This thesis deals with combinatorial problems that are all closely related to the
consecutive-ones property of binary matrices. Herein, the consecutive-ones prop-
erty (C1P) means that the columns of a binary matrix can be ordered in such a
way that the 1s appear consecutively in every row, that is, every row contains at
most one block of 1s.

In this first chapter, we start with giving three short examples for the occur-
rence of the C1P in practical applications. In the remainder of the chapter, we
introduce the notation used throughout the thesis and provide a short overview
of the basic concepts of algorithmics and computational complexity theory.

1.1 Introductory Examples

This section presents, as a motivation and warm-up, three short examples that il-
lustrate how the C1P can play a role in practical applications. The examples shall
also demonstrate how problems from practical applications can be formulated in
a compact and precise mathematical form that abstracts from all information
that is unnecessary for solving the problem. Since our goal here is to give a
rather intuitive understanding, we do not prove the correctness of the approaches
described in the three examples.

Physical mapping of DNA. Our first example application has its background
in computational biology, where the construction of physical maps for the hu-
man DNA was a central issue in the past years [ABH98, AM96, GGKS95, LH03,
WR00]. A physical map is a map that describes the relative order of markers
on a chromosome. A chromosome is basically a long sequence of DNA, and a
marker is a short DNA sequence that appears only once on the chromosome and,
therefore, is of special interest. To create a physical map, the chromosome is cut
into shorter pieces, which are duplicated and called clones. Thereafter, one tests
for each of the clones which of the markers appears on it. These tests, however,
can only find out whether a marker appears on a clone, but it is not possible to

1

2 Chapter 1. Introduction

AA BB CC DD EE FF GG

11
22
33
44
55
66
77
88

11111111
1111

1
11

1
1

1
1

1
1

1

1

1
1

1
1

1
1
1

1

1

1

111
1111

1111
11

1111
1111

000000
0000000000

0
0

0
0

0
0
0

0

0

0

0
0

0

0
00

0
0

0

0
0

0000
000

000
00000

000
000

Figure 1.1: An application from physical mapping.

determine the order of the markers on the clone. The result is a binary matrix
as shown in the left part of Figure 1.1: Every row corresponds to a clone, and
every column corresponds to a marker. If a marker appears on a clone, then the
corresponding entry of the matrix is 1, otherwise it is 0. Now, the crucial obser-
vation for finding the correct order of the markers is that if two markers A and B
appear on a clone x, but another marker C does not appear on x, then C cannot
lie between A and B on the chromosome. Therefore, to figure out the order of
the markers on the chromosome, all one has to do is to order the columns of the
matrix in such a way that in every row the 1s appear consecutively. In concrete
practical applications, however, the biochemical methods always produce errors
such that it is often impossible to order the columns in the resulting matrices
as described. One way to deal with these errors is to discard a smallest possible
number of clones such that the remaining clones lead to a consistent order of the
markers. On the level of binary matrices, this approach means that one has to
delete a minimum number of rows such that in the resulting matrix the 1s can
be placed consecutively by reordering the columns. This matrix problem is the
subject of Chapter 4 of this thesis. The right part of Figure 1.1 shows that in our
example we do not have to delete more than two rows.

Placing sender stations in cellular networks. Cellular networks are net-
works that consist of two types of participants: base stations and client stations.
For example, cell phone towers and cell phones form a cellular network. The
operator of a such a network can be confronted with the following problem (see
also [KRW+05]): To guarantee the network coverage of an area with several set-
tlements, new base stations have to be built. Taking into account the landscape,
and, since the stations should be accessible by car, there exist only a certain
number of locations that are suitable for planting new base stations. Once a base
station is built, it has a certain transmission range. The left part of Figure 1.2
demonstrates the situation: there are eight settlements 1–8 and five suitable lo-
cations A–E; each location is drawn as a point together with a cycle denoting the

1.1. Introductory Examples 3

A

B

C

D

E

1

2

34

5

6
7

8

A B C D E

1

2

3

4

5

6

7

8

3

4 111

111

1

1

11

111

111

111

111

11

00

00

0000

0000

000

00

00

00

00

000

Figure 1.2: The problem of placing base stations in cellular networks.

transmission range of a base station that could be placed at this point. The task
of the network operator now is to select a sufficient large number of the locations
for building his new base stations there, such that an optimal network coverage of
all settlements is obtained. Thereby, two constraints have to be regarded: First,
every settlement should lie within the transmission range of at least one base
station. Second, there are some client stations that are sensitive to interferences.
In our example, let us assume that such client stations exist in the settlements 3
and 4. Therefore, each of the settlements 3 and 4 should lie within the trans-
mission range of at most two base stations—receiving signals from three or more
base stations would disturb the client stations there.

The right part of Figure 1.2 shows how to translate this problem into a matrix
problem. The corresponding matrix consists of an upper part and a lower part.
The upper part has one row for every settlement 1–8, and the lower part has one
row for each of the settlements 3 and 4. Furthermore, the matrix has one column
for every location A–E. If a settlement lies within the transmission range of a
potential base station, then the corresponding entry of the matrix is 1, otherwise
it is 0. The problem that now has to be solved on this matrix is: Find some
columns that contain at least one 1 from every row of the upper part and at
most two 1s from every row of the lower part. In our example, the columns B,
D, and E would form a solution for this problem. One can easily verify that
building base stations at the corresponding locations yields a network coverage
for the settlements as desired.

Note that the matrix resulting from the base station problem typically has a
very special structure (see also [MSW05, MW04, RS04]): it is “close” to having

4 Chapter 1. Introduction

the C1P—in our example, there are only two blocks of 1s in every row. This
is due to the facts that the transmission ranges of the base stations are cycles
and that the locations A–E of the base stations all are close to some street and,
therefore, are arranged in a special way.

Sensor selection in multi-sensor fusion applications. Our third example is
adapted from Koushanfar et al. [KSPS02] and deals with minimizing the number
of sensors in a multi-sensor fusion application. In this application, one has to
classify objects by using a set of sensors. Herein, classifying means to determine
for every object that is detected to which of six given object types A–F the object
belongs. Every object has two properties—we will call them size and wavelength
here—, which can be expressed as a number each. By considering these two
properties, every object can uniquely be assigned to one of the six object types. In
particular, no two object types have the same combination of these two properties.
See parts a) and c) of Figure 1.3 for two examples; the object types are displayed
as points in a two-dimensional coordinate system where one coordinate stands
for the size and the other for the wavelength of the corresponding object type.
The object type C in part a) of Figure 1.3, for example, consists of objects of
size 2.7 μm and a wavelength of 420 nm.

Now assume that there are a huge number of different sensors available; each
of these sensors has a certain threshold value t and can either detect whether the
size of an object is at least t, or whether the wavelength is at least t (in particular,
a sensor cannot measure both size and wavelength). For several reasons (costs,
simplicity,. . .), as few as possible sensors shall be bought and installed, such
that with these few sensors it is possible to identify the type of every object
that passes the sensors. For the object types displayed in part a) of Figure 1.3
one needs five sensors; part b) of Figure 1.3 shows one (of several) possibilities
how these five sensors can be selected—every vertical or horizontal line in this
illustration corresponds to one sensor. These five sensors indeed have the ability
to classify every object: If, for example, the sensors report that an object has
a size between 200 and 400 μm and a wavelength of at least 500 nm, then this
object must be of type D. Part d) of Figure 1.3 shows that three sensors are
sufficient for the object types shown in part c) of the figure.

Given a set of object types, how can one find a suitable set of as few as
possible sensors? Parts b) and d) of Figure 1.3 illustrate a way how to interpret
this task as a geometric problem: The problem of selecting sensors is equivalent to
the problem of finding a minimum-size set of axis-parallel lines in the coordinate
systems of parts a) and c) of Figure 1.3, such that every pair of points is divided
by these lines. In other words, one has to find a minimum-size set of axis-parallel
lines that divide the coordinate system into several areas, such that no two points
lie within the same area. In order to solve the problem of dividing points with
lines, we transform this problem into another geometric problem. To this end,
for every pair of points in the coordinate system, we insert a rectangle such that

1.1. Introductory Examples 5

a)

size [μm]

wavelength [nm]

A

B
C

D
E

F

1 2 3 4 5

300

400

500

600

700

800

b)

size [μm]

wavelength [nm]

A

B
C

D
E

F

1 2 3 4 5

300

400

500

600

700

800

c)

size [μm]

wavelength [nm]

1 2 3 4 5

300

400

500

600

700

800

d)

size [μm]

wavelength [nm]

1 2 3 4 5

300

400

500

600

700

800

e)

size [μm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

f)

size [μm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

g)

size [μm]

wavelength [nm]

1 2 3 4 5 6

500

600

700

800

h)

size [μm]

wavelength [nm]

1 2 3 4 5

500

600

700

800

Figure 1.3: Selecting a minimum number of sensors.

6 Chapter 1. Introduction

the two points lie on two opposite edges of the rectangle [CDKW05].
Part e) of Figure 1.3 shows an example which consists, for the ease of presen-

tation, of only four object types. Part f) of Figure 1.3 shows how to insert the
rectangles. Since rectangles that contain other rectangles can be omitted, there
are five rectangles. (In the figure, two rectangles are grey-colored, two rectangles
are drawn with a diagonal top right to bottom left hatching, and one is drawn
with a diagonal top left to bottom right hatching.) The problem that has to
be solved now is the following: Find a set of axis-parallel lines such that every
rectangle is intersected by at least one of these lines. This problem is known as
(2-Dimensional) Rectangle Stabbing, and it is identical to a column selec-
tion problem on matrices that have at most two blocks of 1s per row. Part g) of
Figure 1.3 shows that all rectangles in the example can be intersected with only
two lines, and part h) shows the corresponding solution for dividing the four given
points in the coordinate system. Hence, for classifying objects, in this example
two sensors would suffice: one sensor with a size threshold of 3 μm and one sensor
with a wavelength threshold of 600 nm.

All problems occurring in these three application examples are subject of this
thesis. The problem of obtaining the C1P by row or column deletions is addressed
in Chapter 4. For solving this problem, we also have to identify those parts of
a matrix that conflict with the C1P; in Chapter 3 we provide our results in this
direction. Selecting columns from a matrix in order to hit at least one 1-entry
from some of the rows but not too many 1-entries from the other rows is the
subject of Chapter 5, and in Chapter 6, finally, we consider the (d-Dimensio-

nal) Rectangle Stabbing problem.

1.2 Basic Definitions

A set S properly contains a set S ′ if S ′ ⊆ S and S \ S ′ �= ∅; we also say that
S ′ is a proper subset of S. A set S is called minimal (maximal) with respect to a
property if no proper subset (no proper superset) of S also has this property. In
contrast, a set is called minimum (maximum) with respect to a property if there
exists no set of smaller (greater) cardinality that has the property.

As usual, we often write iff instead of “if and only if.” With log(x) we denote
the logarithm of x to the base 2. By �, we refer to the set of positive integers.
For two integers i, j with j > 0, the remainder of the division i by j is denoted
by i mod j; for example, 17 mod 5 = 2. We define i mod j as

i mod j := ((i − 1) mod j) + 1,

that is,

i mod j =

{
i mod j if i mod j > 0
j if i mod j = 0

1.2. Basic Definitions 7

Moreover, for an integer n > 0 we define

predn, succn : {1, . . . , n} → {1, . . . , n}
as the two functions given by

predn(x) := (x − 1) modn, succn(x) := (x + 1) modn,

that is,

predn(x) =

{
x − 1 if x > 1
n if x = 1

and

succn(x) =

{
x + 1 if x < n
1 if x = n.

The Big-O-Notation allows to ignore constants when describing functions:
Given two functions f, g : �→ �, then f ∈ O(g) if ∃c > 0 ∃n0 ∀n > n0 : |f(n)| ≤
c · |g(n)|. One often writes f = O(g) instead of f ∈ O(g), and if f ∈ O(g), one
often writes O(g(x)) to denote the value f(x).

The O∗-Notation is a notation similar to the Big-O-Notation; it was intro-
duced by Woeginger [Woe03] for describing running times of algorithms and
thereby omitting all polynomials in the input size. We use the following defi-
nition: Given two functions f, g : �d → �, then f ∈ O∗(g) if there exists a
polynomial p : �d → � such that ∃n0 ∀n1, . . . , nd > n0 : |f(n1, . . . , nd)| ≤
|p(n1, . . . , nd) · g(n1, . . . , nd)|.

For basic introductions to discrete mathematics and algorithmics, we refer
to [Ros06, CLRS01].

Graphs. An (undirected) graph is a tuple (V, E), where V is a finite set and E
is a set of size-two subsets from V . An element from V is called a vertex, and
an element from E is called an edge. For a graph G, we denote with V (G) the
set of G’s vertices and with E(G) the set of G’s edges. In a graph G = (V, E),
two vertices v and w are adjacent (or connected by an edge) if E contains the
edge {v, w}; in this case v and w are neighbors of each other. The edge {v, w}
is incident to v and w, and the vertices v, w are the endpoints of {v, w}. The
degree deg(v) of a vertex v denotes the number of its neighbors. The (open)
neighborhood of a vertex v is the set of all neighbors of v and is denoted by N(v).
The closed neighborhood of v, denoted by N [v], is defined as N [v] := N(v)∪ {v}.
A subgraph of G is a graph G′ := (V ′, E ′) with V ′ ⊆ V and E ′ ⊆ E. For
V ′ ⊆ V , the subgraph of G that is induced by V ′ is the graph G′ = (V ′, E ′)
with E ′ = {{v, w} ∈ E | v ∈ V ′ ∧ w ∈ V ′}; this subgraph is denoted by G[V ′].
Deleting a vertex v ∈ V from a graph G = (V, E) means deleting v from V and
deleting every edge from E where v is one of the endpoints.

A path is a graph P = (V, E) with vertex set V = {v1, . . . , vn} and edge set
E = {{v1, v2}, {v2, v3}, . . . , {vn−2, vn−1}, {vn−1, vn}}; the vertices v1 and vn are

8 Chapter 1. Introduction

called the endpoints of P . A cycle is a graph consisting of a path v1, . . . , vn and
the additional edge {vn, v1}. Sometimes we describe a path or a cycle by giving
only the sequence v1, . . . , vn of its vertices. The length of a path or cycle is the
number of its edges, that is, the length of a path P equals the number of P ’s
vertices minus 1 and the length of a cycle C equals the number of C’s vertices.
With Pn we denote a path with n vertices, and with Cn we denote a cycle with
n vertices. A chord of a cycle is an edge e that is not part of the cycle but connects
two vertices of the cycle. A hole is an induced cycle of length at least 5, that is, a
cycle of length at least 5 where no chords exist. A graph is chordal if it contains
no induced cycle (that is, no chordless cycle) of length greater than three. Two
vertices vi, vj in a graph G are called connected (by a path) if G contains a path as
subgraph whose endpoints are vi and vj . A graph is called a connected graph if all
of its vertices are pairwisely connected by paths. A maximal connected subgraph
of a graph G is called a connected component of G. A tree is a connected graph
without cycles; a vertex of degree one in a tree is called a leaf. A rooted tree is
a tree where one vertex is marked as the root of the tree. A clique is a complete
graph, that is, a graph G = (V, E) with E = {{v, w} | v, w ∈ V ∧ v �= w}.
With Kn we denote a clique with n vertices. An independent set is a set of
vertices that are not connected by edges.

A graph G = (V, E) is bipartite if V can be partitioned into two vertex
sets V1, V2 such that every edge in E has one endpoint in V1 and one endpoint
in V2. A bipartite graph G = (V, E) together with a partition of V into V1 and V2

is often denoted by a triple (V1, V2, E). A hole in a bipartite graph is an induced
cycle of length at least 6.

A directed graph is a tuple (V, E), where the edges from E are ordered
pairs (instead of size-2 sets) of vertices from V . Directed paths and cycles
are defined analogously to the undirected case, that is, a directed path is a
directed graph P = (V, E) with vertex set V = {v1, . . . , vn} and edge set
E = {(v1, v2), . . . , (vn−1, vn)}, and a directed cycle is a graph consisting of a
path v1, . . . , vn and the additional edge (vn, v1).

For a general introduction to graph theory, we refer to [Die05, Wes01]; for
more about directed graphs, see [BG02].

Matrices. A matrix is a rectangular table of numbers, which are called the
entries of the matrix. An m×n matrix contains m ·n entries, which are arranged
in m rows and n columns. The entry in the ith row and jth column of a matrix M
is denoted by mi,j; moreover, we usually use ri and cj to denote the ith row and
the jth column, respectively, of a matrix. One can also regard a matrix as a
set of columns (or rows) together with an order on this set; the order of the
columns (rows) is called the column ordering (row ordering) of the matrix. Two
matrices M and M ′ are called isomorphic if M ′ is a permutation of the rows and
columns of M . In particular, if two matrices consist of the same set of columns
(rows) but only differ in their column orderings (row orderings), these matrices

1.3. Computational Complexity Theory 9

are isomorphic (however, the reverse is not always true, since two isomorphic
matrices may consist of differing rows and columns). We use the term line of a
matrix M to denote a row or column of M .

A matrix M ′ is usually called a submatrix of a matrix M if one can select
a subset of the rows and columns of M in such a way that deleting all but the
selected rows and columns from M results in M ′. We extend this notion and
call M ′ also a submatrix of M if we can select a subset of the rows and columns
of M in such a way that deleting all but the selected rows and columns results in
a matrix that is isomorphic to M ′. If one can find a submatrix M ′ of M in this
way, we say that M contains M ′ as a submatrix and that M ′ is induced by the
selected rows and columns. A matrix M is M ′-free if M ′ is not a submatrix of M .
Let ri denote the ith row and let cj denote the jth column of M , and let M ′ be
the submatrix of M that results from deleting all rows except for ri1 , . . . , rip and
all columns except for cj1, . . . , cjq from M . Then, a row ri of M belongs to M ′,
denoted by ri ∈ M ′, if i ∈ {i1, . . . , ip}. Analogously, a column cj of M belongs
to M ′ if j ∈ {j1, . . . , jq}. A submatrix of a matrix M is called a proper submatrix
of M if not all rows or not all columns of M belong to M ′.

A matrix whose entries are all from {0, 1} is called a binary matrix or 0/1-
matrix ; a matrix whose entries are all from {0, 1,−1} is called a 0/±1-matrix. A
column of M that contains only 0-entries is called a 0-column. Complementing a
line � of a matrix means that all 1-entries of � are replaced by 0s and all 0-entries
are replaced by 1s.

A square matrix is an m × n matrix with m = n; the main diagonal of an
n × n square matrix M denotes the entries m1,1, m2,2, . . . , mn,n. A unit matrix
is a square matrix where the entries of the main diagonal are 1 and all other
entries are 0. The transpose of an m × n matrix M , denoted by MT, is the
n×m matrix M ′ with m′

j,i = mi,j . A vector �x is an m× 1 matrix, its entries are
usually denoted with x1, . . . , xm.

The half adjacency matrix of a bipartite graph G = (V1, V2, E) with V1 =
{v1, . . . , vn1} and V2 = {w1, . . . , wn2} is the n1×n2 binary matrix M with mi,j = 1
iff {vi, wj} ∈ E. Every 0/1-matrix M can be interpreted as the half adjacency
matrix of a bipartite graph; this graph is called the representing graph GM of M .
In other words, for every row and every column of a matrix M , there is a vertex
in its representing graph GM , and for every 1-entry mi,j in M , there is an edge
in GM connecting the vertices corresponding to the ith row and the jth column
of M .

1.3 Computational Complexity Theory

The main chapters of this work deal with the question whether there are efficient
algorithms for certain combinatorial problems. Herein, “efficient” means that
the running time of an algorithm is a slowly growing function in the size of the
input. This question, or, more generally, the analysis of the amount of required re-

10 Chapter 1. Introduction

sources (not only time but also, for example, memory space or bits of information
exchanged between several processors) for solving problems is one of the main is-
sues in computational complexity theory and theoretical computer science. When
considering a problem (we will define later what exactly we mean with the term
“problem”), hence, the task is typically to find either an efficient algorithm for
the problem, or, contrariwise, a proof for the non-existence of such an algorithm.
Unfortunately, in most cases where we are not able to find an efficient algorithm,
there are no methods known how to prove that an efficient algorithm cannot exist.
Therefore, we are usually satisfied with comparing such a difficult problem with
other problems. To this end, we sort problems into complexity classes, which
allows to say that a problem is “at least as difficult as many other problems that
are already assumed to be difficult.” There are many “hardness predicates” of
this kind (for example, NP-hardness, APX-hardness, W[1]-hardness, . . .), and
the ways they are defined are very similar in most cases: First, define a class C
that contains many problems that are already assumed to be “difficult” (which
means that after a long period of research there is still no efficient algorithm
known for them). Second, show that if there was an efficient algorithm for one of
the “difficult” problems in C, then for all problems in C there would exist efficient
algorithms (this affirms the “difficulty” of each of the “difficult” problems). Now,
a problem X can be called “C-hard” if one can show that the existence of an
efficient algorithm for X would imply the existence of efficient algorithms for all
problems in C.

In this section, we give a more formal description of the types of problems
we are dealing with, and we introduce some of the most important complexity
classes and notions of hardness. We restrict ourselves to the resource “time”, that
is, we only consider the time that is needed by an algorithm; on the one hand,
because this is the resource that is studied most extensively in literature, and, on
the other hand, because time seems to be the resource most relevant in practice.1

1.3.1 “Classical” Complexity Theory

Here, we introduce the main concepts of complexity theory as described by Pa-
padimitriou [Pap94]. We start with considering decision problems and the corre-
sponding complexity classes and will then turn over to other problem types.

Decision problems. The first type of problems to describe are decision prob-
lems. A decision problem has a (usually infinitive) set of possible inputs, which are
called (problem) instances and consist of mathematical objects. For every given
instance of a particular problem, a question is posed, which asks if the instance
has a certain property and which can be answered with yes or no. This question

1If an algorithm needs only a limited amount of time for its computation, then, of course,
the memory space it needs is also bounded because for every memory access a certain amount
of time has to be spent.

1.3. Computational Complexity Theory 11

Figure 1.4: Example for Vertex Cover. The black vertices form a vertex cover
of size three: Every edge has at least one black endpoint.

is specific for each decision problem, which means that every decision problem is
uniquely defined by the allowed inputs and the question that is asked for each
of the inputs. Therefore, we consider a decision problem X as a pair (IX , qX)
consisting of a set IX of instances and a question qX . A problem instance x ∈ IX

is called a yes-instance of X if the answer to the question qX is yes for x, and a
no-instance otherwise.2

As an example for a decision problem, consider the problem Vertex Cover,
which is defined as follows and will be used as a running example throughout this
section.

������ �����

Input: An undirected graph G = (V, E) and a nonnegative inte-
ger k.

Question: Is there a subset C ⊆ V of at most k vertices such that
each edge in E has at least one endpoint in C?

In the case of Vertex Cover, every problem instance consists of a pair (G =
(V, E), k); a vertex set C ⊆ V with the property that every edge in E has at least
one endpoint in C is called a vertex cover for the graph G (see Figure 1.4).

Running Times and the Turing Machine Model. Problems can be clas-
sified by considering the running times that are needed to solve them. To this
end, an abstract computer model is used which is called (deterministic) Turing
machine and whose computational power is identical to that of most relevant
real-world computer programs—for example, each problem that can be solved by
a Java program can also be solved within a “similar” running time by an adequate
Turing machine and vice versa. The running time needed to solve a problem X
is measured in terms of how many steps a Turing machine M has to perform
to solve the problem. This number of steps is always given as a function tM(n)
in the size n of the input. (For example, the running time of a Turing machine
solving Vertex Cover would be given as a function in the number of vertices

2An alternative point of view is the definition of a decision problem as a language: A
language, in the sense of complexity theory, is a set of binary strings, the so-called words ;
instead of defining a decision problem X as a pair (IX , qX), one can define X by a language
that contains as words all yes-instances of X , encoded as binary strings.

12 Chapter 1. Introduction

and edges of the input graph.) More exactly, the function tM (n) always expresses
the so-called worst-case running time of the Turing machine M , that is, tM(n) is
the maximum running time needed by M , taken over all inputs of size n.

The Complexity Class P. In order to constitute a classifying tool, problems
that can be solved within similar running times are grouped together and sorted
into complexity classes, with P and NP being two of the most important of these
classes. The class P contains all decision problems that can be solved within a
polynomial running time. That is, for every problem X ∈ P there is a Turing
machine MX whose running time tMX

(n) is a polynomial in n. For most practical
applications such a polynomial running time means that the problem is solvable
within a reasonable amount of time. However, there are a lot of problems of
practical relevance for which no polynomial-time algorithms are known.

Nondeterminism. For defining the complexity class NP, a modified computer
model called nondeterministic Turing machine is introduced: In contrast to de-
terministic Turing machines, a nondeterministic Turing machine has the freedom
to guess in every step. By definition, a nondeterministic Turing machine solves a
problem if for every no-instance it always answers correctly with no, and if for ev-
ery yes-instance it answers correctly with yes provided that it has made the right
guess in every step. One can imagine a nondeterministic Turing machine as a ran-
domized machine that answers correctly for every no-instance and that answers
correctly with a probability greater than zero for every yes-instance. Typically, a
nondeterministic Turing machine solves a problem with the following two-phase
approach: In the first phase, it guesses a “witness” that proves the correctness of
the answer yes (for example, in the case of Vertex Cover it guesses a vertex
set C of size k). In the second phase, it checks—without guessing—whether the
witness is correct (in our example, it checks whether C is indeed a vertex cover)
and answers according to the result of the check. A correct witness is usually
called a certificate or solution.

The Complexity Class NP. Like in the case of deterministic Turing machines,
the running time of a nondeterministic Turing machine M for a problem X is
expressed as a function tM(n) in the input size n; it gives the maximum number
of steps the Turing machine can need for solving a problem instance of size n.
The class NP is defined as the class of all decision problems X that can be
solved nondeterministically within a polynomial running time. That is, for every
problem X ∈ NP there is a nondeterministic Turing machine MX whose running
time tMX

(n) is a polynomial in n. Therefore, the class NP contains exactly those
problems where each yes-instance has a certificate whose size is polynomial in the
input size and whose correctness can be checked deterministically in polynomial
time. (Note that the class P contains those problems of NP where a certificate of

1.3. Computational Complexity Theory 13

each yes-instance can not only be checked, but also constructed deterministically
in polynomial time.)

Polynomial-Time Reductions, NP-Hardness, and NP-Completeness.
Due to the power of guessing, the class NP contains an enormous number of
problems (although there exist problems that are even too hard to be solved
nondeterministically in polynomial time), many of them of substantial practical
relevance. In particular, all problems that belong to P are also contained in NP
(which directly follows from the definitions). However, there are a lot of impor-
tant problems in NP that seem not to be solvable deterministically in polynomial
time: Replacing the powerful guessing by deterministic steps—for example, by
trying several possibilities—often results in exponential running times (the so-
called “combinatorial explosion”), which often makes these problems intractable
in practice. In order to unite such “difficult” problems into a class of their own,
and to produce evidence for their intractability by showing that either all or none
of these problems are solvable deterministically in polynomial time, the concept of
reductions is introduced: A problem X is (polynomial-time) reducible to a prob-
lem Y , denoted by X ≤P Y , if there is a function Φ that maps every problem
instance x of X to a problem instance y = Φ(x) of Y such that y is a yes-instance
of Y iff x is a yes-instance of X. Moreover, there must be a polynomial tΦ such
that the time for computing Φ(x)—and, hence, also the size of Φ(x)—does not
exceed tΦ(|x|). Intuitively speaking, the problem Y is “as least as hard” as the
problem X, because a problem instance x of X can be solved in polynomial time
by using any polynomial-time algorithm for the problem Y : First, compute the
problem instance y = Φ(x) of Y , and then solve y using the algorithm for Y —the
output of this algorithm is the answer for y as well as for x.3

The concept of reducing one problem to another can be illustrated by the very
simple reduction of the problem Independent Set to Vertex Cover: The
problem Independent Set asks, given a graph G = (V, E) and a nonnegative
integer k, whether G has an independent set V ′ ⊆ V of at least k vertices. (An
independent set is a set of vertices that are pairwise not connected by edges.)
Independent Set can be reduced to Vertex Cover by mapping each prob-
lem instance (G, k) of Independent Set to a problem instance (G, |V | − k)
of Vertex Cover. If (G, |V | − k) is a yes-instance of Vertex Cover, then G
has a vertex cover C of size at most |V |−k and, therefore, (G, k) is a yes-instance
of Independent Set: The vertices not belonging to C are not connected by

3Polynomial-time reductions as described here are also called many-one reductions or Karp
reductions. There are also other types of reductions (see [LLS75]), of which the most common
is called Turing reduction: A problem X is called Turing reducible to a problem Y if there is a
deterministic Turing machine M that can solve X in polynomial time provided that M has a
built-in subroutine—called oracle—that solves Y in constant time. For solving X in polynomial
time, M can construct polynomially many polynomial-size instances of Y and call the oracle
on these instances. The class that contains all problems that are Turing reducible to problems
in NP is called PNP.

14 Chapter 1. Introduction

edges and form an independent set of size at least k (to see this, consider the
white vertices in Fig 1.4). If, however, the instance (G, |V | − k) is a no-instance
of Vertex Cover, then (G, k) is a no-instance of Independent Set, because
if there was an independent set V ′ of size at least k, then the vertices in V \ V ′

would form a vertex cover of size at most |V | − k.
The definition of polynomial-time reductions directly implies that if X ≤P Y

and Y ∈ P, then also X ∈ P (“the class P is closed under polynomial-time re-
ductions”). The other way round, if X ≤P Y and if X is one of the “difficult”
problems, it is unlikely that Y can be solved in polynomial time (because oth-
erwise the reduction would constitute a polynomial-time algorithm for X). A
problem Y is called NP-hard if every problem X ∈ NP can be reduced to Y .
If, in addition, the problem Y itself belongs to NP, the problem Y is called NP-
complete. For example, Vertex Cover is an NP-complete problem. Note that
to show the NP-hardness of a problem Y it suffices to give a reduction from
one NP-hard problem X to Y , because the composition of two polynomial-time
reductions is again a polynomial-time reduction.

NP-complete problems are, by definition, the “most difficult” problems of the
class NP, and no algorithms are known that solve these problems efficiently. In
fact, it is very unlikely that a polynomial-time algorithm for any NP-hard problem
can ever be found, because this would immediately imply that all problems in
NP (in particular, all NP-complete problems) could be solved in polynomial time,
meaning that NP = P. There are thousands of NP-complete problems, and they
arise in all areas of life [GJ79, Pap97]; the question whether NP = P is one
of the seven “Millennium Prize Problems” named by The Clay Mathematics
Institute [Cla09].

Function Problems. So far, we have only considered decision problems. How-
ever, in practical applications one often does not only want to know whether a
problem instance has a solution (that is, whether it is a yes-instance), but one is
interested in finding such a solution. For example, in the case of Vertex Cover,
the following problem definition could be more useful for many applications.

������ ����� 		

Input: An undirected graph G = (V, E) and a nonnegative integer k.
Task: Find a vertex cover C for G that consists of at most k vertices,

or report that no such vertex cover exists.

Problems of this kind are called function problems. Since the definitions of P
and NP do not apply to these problems, there are specific complexity classes
for function problems: In particular, the class of problems where the task is
to compute a certificate for an instance of a decision problem X from NP is
called FNP (Vertex Cover II would be a typical representative for this class).
If a problem in FNP can be solved deterministically in polynomial time, that is,
a certificate for a given instance can be computed in polynomial time if existing,
then it belongs to the class FP.

