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Chapter 1

Introduction

Optical interconnects and silicon photonics

Optical technologies constitute the core of long-haul communication. The large
bandwidth and low propagation losses provided by fiber based optical communica-
tion systems make it possible to transport large amounts of information over long
distances, for instance, between continents [1–3]. Beyond that, their superior per-
formance is increasingly pushing the introduction of optical interconnects for com-
munication over shorter ranges. In enterprise networks, for example, comprising
distances up to a few kilometers, optical interconnects are deployed for applications
requiring large bandwidth and propagation lenghts [3]. Furthermore, as bandwidth
requirements increase and the miniaturization of integrated electronics advances,
the performance of electrical interconnects decreases even at the very short ranges
(� 10m) of board-to-board, chip-to-chip and on-chip communication [3–11]. At
these integration levels, too, optical interconnects have been proposed to overcome
the expected limitations [3–11].

Within this context, silicon has attracted great attention as a promising plat-
form for the implementation of the required photonic components, both, because
of the maturity of the material processing already available from the electronics in-
dustry [12], and since it would allow a close integration of photonic and electronic
functionalities, improving the overall system performance [3, 5, 13, 14].

The most fundamental components of an optical interconnect are a light source,
which generates an optical signal onto which the information is coded by an optical
modulator, furthermore, the optical transmission system, which transports the infor-
mation from one location to the next, where the light finally hits an optical detector,
which generates an electric signal and passes it on to further electronic components.
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However, as the development of photonic technologies advances in the future, it is
conceivable to achieve a higher system peformance through an increased level of
complexity in the photonic functionality [14]. For instance, a higher integration
density could be achieved through the deployment of wavelength division multiplex-
ing (WDM) [10, 11], in the same way that the utilization of wavelength converters
would potentially lead to an improved network performance [15, 16]. Furthermore,
tunable optical delays are necessary for applications such as optical time division
multiplexing (OTDM), and are indispensable as buffers in optical routers [17, 18].

A tunable control of the properties of light, for instance wavelength, wave vector
and group velocity, can be realized by performing a time dependent modulation of
the structure within which the light is confined, a process which is referred to as
a dynamic modulation in the recent literature. The work presented in this thesis
is aimed at the implementation of such dynamic effects, at the same time that it
pursues the goal of developing an all-optical dynamic switching scheme that can be
fully integrated on-chip. Because of their unique properties, photonic crystal devices,
fabricated on silicon, provide the platform onto which these effects are realized. In
the following, short introductions to dynamic effects and photonic crystals are given,
as well as a description of the goals and of the outline of this thesis.

Dynamic photonic devices

There is a very simple and well-known example that allows an intuitive introduction
to dynamic effects, namely a guitar [19]. When a guitar string is plucked, it oscillates
and emits a tone at a given frequency spectrum; however, if a mechanical property
of the string, say, the tension applied on it, is changed while it is still vibrating, the
acoustic frequency it generates changes as well.

Similarly, in optics, the recent literature refers to a dynamically modulated pho-
tonic structure if its optical properties are changed while an optical signal is confined
within it [16, 19–30]. Generally, the properties of the light that is enclosed in the
dynamically controlled structure change, analogously to the change of acoustic fre-
quency in the case of the guitar. Dynamic photonic devices have been deployed to
demonstrate interesting effects such as optical wavelength conversion and tunable
optical delays [16, 31], both in structures of dimensions as small as 6 μm and 40 μm,
respectively.

The key requirement for the implementation of dynamic effects is an appropriate
temporal modulation of the optical properties of the photonic structure. First, it
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has to be ensured that the modulation only starts once the optical signal has already
entered the device, or, in other words, it must be turned on relatively delayed with
respect to the arrival time of the optical signal. Second, after being switched on,
it must have a rise time which is shorter than the lifetime of the optical signal,
otherwise the signal will exit the device before the modulation has taken place.
Both requirements can be fulfilled by an optically induced refractive index change,
triggered by the linear absorption of a short optical switching pulse that is incident
on the device from a direction perpendicular to the plane on which the structure
resides. This method has been widely employed in the literature [16, 26, 27, 31–34].

One of the goals of this thesis is to integrate the optical switching pulse on the
device plane, such that it copropagates in the same structure as the optical signal
which is to be manipulated. This requires, first, a different mechanism of optically
inducing a refractive index change, and, second, different propagation velocities for
the switching and the signal pulses, such that the requirements on the temporal
profile of the modulation can still be fulfilled, as will be explained in more detail in
chapters 2 and 4.

A key feature of photonic crystal devices consists in that they provide the pos-
sibility of achieving different group velocities for the copropagating switching and
signal pulses, which is the reason why they will be deployed in the frame of this
thesis.

Photonic crystals

Photonic crystals are dielectric materials exhibiting a periodic dielectric function
[35]. The solutions of Maxwell’s equations in a photonic crystal are plane waves
modulated by an amplitude that possesses the same periodicity as the dielectric
function. These so-called Bloch modes can be classified according to their frequency
ω and their wave vector k in a dispersion plot ω (k), which is also known as the
band diagram. Photonic crystals and light constitute the optical analogue to atomic
lattices and electron wave functions known from solid-state physics [35].

Depending on their periodicity, photonic crystals might exhibit frequency regions
within which no optical modes are allowed, so-called band gap regions. Therefore,
they open up the possibility of implementing reflecting components for frequencies
lying within the band gap, in turn enabling the design of photonic crystal resonators
and waveguides [35, 36].
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devices, especially of resonators and waveguides, are of uttermost importance. In
the first place, they provide the possibility of controlling the frequency dependent
propagation velocity of light by a careful design of geometry [36–38]. Consequently,
it is possible to achieve different propagation velocities for the switching and signal
pulses, paving the way for the on-chip integration of all-optical dynamic switching,
as presented in chapters 4-5. Second, it is possible to tailor the frequency dependent
modal distribution in photonic crystal waveguides, which permits the development
of waveguide based tunable optical delays, as will be discussed in chapter 3.

Goals and outline of this thesis

The goals addressed in this thesis are:

• The development of a concept for performing dynamic switching. It is intended
to trigger the switching by an optical control pulse, called the switching pulse,
which is guided in the same device as the light signal which is to be dynam-
ically manipulated. This mechanism will be referred to as all-optical on-chip
dynamic switching, and will be deployed in order to realize different dynamic
operations on an optical signal.

• The development of a theoretical concept for dynamically tunable optical time
delays and dynamic light stopping in photonic crystal waveguides.

• The experimental demonstration of all-optical on-chip dynamic switching for
frequency conversion of optical signals in photonic crystal cavities.

• The experimental demonstration of all-optical on-chip dynamic switching for
frequency and wave vector conversion in photonic crystal waveguides.

• The development of a better understanding of the physical processes underly-
ing dynamic effects, therefore providing powerful design rules for the dedicated
engineering of photonic functionalities.

Chapter 2 introduces the basic concepts that are necessary for understanding the
remaining chapters of this thesis. Here, a short introduction to the fundamentals
of photonic crystals is given, as well as a description of the numerical simulation
techniques that have been used in the course of this thesis in order to design photonic
crystal devices. Finally, dynamic effects and their underlying physical mechanism
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employed in the literature. Special attention is paid to the fundamental aspects
which are relevant for the concrete realization of the intended all-optical on-chip
dynamic switching in silicon. The chapter finishes with a discussion about the
limits of the conversion efficiency during dynamic processes, where a differentiation
between resonator and waveguide based devices is made.

Chapter 3 presents a theoretical study on the possibility of performing dynamic
light storage and tunable optical delays in a slow light photonic crystal waveguide.
Compared to resonator based concepts, the presented approach features advantages
concerning the conversion efficiency, and potentially offers practical advantages as
compared to other waveguide based concepts previously discussed in the literature.
Especially, the results of this chapter provide the more general insight that a spatially
inhomogenous modulation constitutes a flexible tool for the dedicated engineering
of optical funcionality.

Chapter 4 presents the first experimental demonstration of all-optical on-chip
dynamic frequency conversion. First, a general switching concept is presented, which
is subsequently implemented by employing a photonic crystal cavity. Experimental
results are presented, and a detailed discussion on the measured conversion efficiency
takes place.

Chapter 5 deals with the realization of all-optical on-chip dynamic switching in
a slow light waveguide, following, too, the general switching concept developed in
chapter 4. Here, it will be demonstrated that a simulaneous frequency and wave
vector conversion is achieved, a process which is referred to as an indirect photonic
transition. Remarkably, the results presented in this chapter provide new insights
into the physical mechanism underlying dynamic effects.

Finally, chapter 6 summarizes the main results of this thesis, and, especially,
highlights three versatile design rules, by means of which a variety of applications
are rendered possible. This chapter discusses, too, the main challenges that have to
be overcome.
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Chapter 2

Background

Electromagnetic phenomena are described by Maxwell’s equations, either in their
differential or integral form [39]:

∇D =ρ

ˆ

S

D dS =

ˆ
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ρ dV (2.1)
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ˆ

S
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ˆ
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∂B
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Here, V represents the volume enclosed by the surface S, and A is the open
area enclosed by the path C. The relations between the fields E and H and their
respective fluxes D and B are given by:

D = ε0εE (2.5)

B = μ0μH, (2.6)

where ε and μ are tensors, in the most general case.
The present chapter starts by introducing photonic crystals and by discussing

their general properties, assuming, first, that the materials under consideration are
linear and isotropic, such that the dielectric function ε (r) is scalar; further, it will
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be assumed that the relative magnetic permeability has the value μ = 1. The
material nonlinearity, which is of fundamental significance for the all-optical dynamic
switching, will be taken into account later. Two photonic crystal components, which
are of uttermost importance for the work presented in this thesis, are subsequently
described, namely waveguides and resonators. The description of photonic crystals
given in section 2.1 is based on reference [35], where a very detailed account can be
found.

Given that photonic crystals are complex dielectric materials, numerical methods
are necessary in order to find the solutions of Eq. 2.1-2.6. Therefore, a section of this
chapter is dedicated to the introduction of numerical simulation tools that render it
possible to precisely engineer the optical properties of photonic crystals. The final
section deals with dynamic effects, presents an overview of the advances reported in
the literature, and discusses specific aspects that are relevant for the achievement
of the goals of this thesis.

2.1 Photonic crystals

2.1.1 Infinite photonic crystals

Photonic crystals are dielectric materials with a spatially periodic dielectric function
ε (r), where the periodicity might exist along one, two or three dimensions [35]. In
the absence of electric charges ρ = 0 and electric current densities J = 0, together
with the assumptions made above, Eqs. 2.1-2.6 can be rearranged to assume the form
of an eigenvalue problem for the spatial distribution of the fields. In order to do so,
time-harmonic solutions E (r, t) = E (r) exp (−iωt) and H (r, t) = H (r) exp (−iωt)
are inserted into Maxwell’s equations, and the combined curl expressions result in
the so-called master equation [35]:

∇×
(

1

ε (r)
∇×H (r)

)
=

(ω
c

)2

H (r)

Θ̂H (r) =
(ω
c

)2

H (r) (2.7)

Here, c = 1/
√
ε0μ0 is the speed of light in vacuum. The solutions H (r) of the

master equation 2.7 are therefore eigenvectors of the operator:

Θ̂ = ∇×
(

1

ε (r)
∇×

)
, (2.8)
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with eigenvalues (ω/c)2. Additionally, a solution H (r) must obey the requirement
that ∇H (r) = 0, which results from Eq. 2.2.

By taking the symmetries of the system under consideration into account, it
is possible to determine the form of the eigenvectors H (r) of Θ̂. If the system is
invariant under a symmetry operation represented by the operator T̂ , then T̂ and
Θ̂ commute, and have the same eigenfunctions.

For instance, a photonic crystal possesses discrete translational symmetry, mean-
ing that ε (r) = ε (r+R). Here, R = αa1+ βa2+ γa3 represents any lattice vector,
a1, a2, a3 are the primitive lattice vectors and α, β, γ are integers. The eigenfunc-
tions Hk of the operator T̂R, which peforms the operation r → r + R, are planes
waves modulated by a spatially periodic function uk (r), which fulfills the condition
that uk (r) = uk (r+R) for any lattice vector R. These solutions are called Bloch
states [35]:

Hk (r) = uk (r) e
ikr (2.9)

As explained above, the solutions Hk are simultaneously eigenfunctions of the
operator Θ̂, and can be classified according to their wave vector k and their frequency
eigenvalue ω in a band diagram representation. Finally, two solutions Hk and Hk+G

are the same if G = α
′
b1 + β

′
b2 + γ

′
b3 is a reciprocal lattice vector, where b1, b2,

b3 are the primitive reciprocal lattice vectors, and α
′ , β ′ and γ

′ are integers. This
can be seen by noting that Hk and Hk+G are eigenfunctions of T̂R to the same
eigenvalue, since:

T̂RHk (r) = uk (r+R) eikr+ikR = eikRHk (r)

and
T̂RHk+G (r) = uk+G (r+R) ei(k+G)r+i(k+G)R = eikRHk+G (r)

Therefore, in order to obtain a complete band diagram representation, it is
enough to find the frequency eigenvalues for all wave vectors k lying inside the
first Brillouin zone, the latter being defined such that any wave vector k′ lying out-
side it can be expressed as a sum k

′
= k + G of a wave vector k lying inside the

first Brillouin zone and a reciprocal lattice vector G.

An important property of the master equation 2.7 is its scale invariance [35].
For instance, if the spatial coordinate is scaled by a constant factor r = r

′
/s, the

x−derivative scales as ∂/∂x = ∂/∂x
′ · ∂x′

/∂x = s∂/∂x
′ , and analogously for y and
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Figure 2.1: (a) A photonic crystal slab, consisting of a triangular lattice of air holes
in silicon. The slab is periodic in the xy-plane, and possesses a finite extension in
the z-direction. (b) Line defect and (c) point defect in a photonic crystal slab.

z. The master equation assumes the form:

∇′ ×
(

1

ε (r′/s)
∇′ ×H

(
r
′
/s
))

=

(
ω/s

c

)2

H
(
r
′
/s
)

(2.10)

This expression has the same form as Eq. 2.7, however contains a rescaled dielec-
tric function, as well as rescaled field profiles and eigenfrequencies. In a similar way,
two dielectric functions ε(r) and ε

′
(r) = ε (r) /s2, which differ only by an overall mul-

tiplier, lead to the same eigenfunctions, however, to a scaling of the eigenfrequencies
as ω′

= sω.

2.1.2 Photonic crystal slabs

Photonic crystal slabs are periodic in two dimensions and have a finite spatial extent
in the third direction, in contrast to two dimensional photonic crystals, which are
infinitely extended in the direction of missing periodicity. The material surrounding
the photonic crystal slab is called the cladding material, and has a refractive index
of nclad. A photonic crystal slab consisting of a triangular lattice of air holes in a
dielectric slab is schematically shown in Fig. 2.1a.

The system under consideration, consisting of the photonic crystal slab and the
cladding, possesses translational symmetry in the plane of periodicity of the photonic
crystal. In the same way as for the case of three dimensional translational symmetry
that was discussed in the previous section, the solutions of the master equation are
now found to be plane waves with an in-plane wave vector k||, which are modulated
by a function that is spatially periodic in the plane of periodicity of the photonic
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