Areas | |
---|---|
Serie de libros (96) |
1331
|
Letra |
2308
|
Ciencias Naturales |
5357
|
Ciencias Ingeniería |
1753
|
Ingeniería | 285 |
Ingeniería mecánica y de proceso | 845 |
Ingeniería eléctrica | 673 |
Mineria y metalurgía | 30 |
Arquitectura e ingeniería civil | 73 |
General |
92
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Indice, Datei (39 KB)
Lectura de prueba, Datei (170 KB)
In dieser Arbeit wurde das Potential einer selbstorganisierenden Ressourcenvergabe für
auf der OFDM-Übertragungstechnik basierende zellulare Mobilfunksysteme analysiert und
ein SO-RRM-Konzept für zukünftige 4G-Systeme vorgeschlagen.
Die OFDM-Übertragungstechnik bildet aufgrund ihrer Effizienz und Robustheit gegenüber
der Mehrwegeausbreitung realer Mobilfunkkanäle die übertragungstechnische
Grundlage. Der Systemvorschlag basiert auf einer zellübergreifenden Synchronisation aller
BS und MS in Zeit und Trägerfrequenz. In einem vollständig synchronisierten Funknetz
entstehen zwar GKI, aber keine Nachbarkanalinterferenzen. Dadurch können die
GKI zuverlässig gemessen und als Entscheidungskriterium für die selbstorganisierende
Ressourcenauswahl ausgewertet werden.
Im vorgeschlagenen SO-RRM-System wählen die BS die für die Versorgung der MS benötigten
Ressourcen autonom aus. Die Auswahl basiert auf den in DL und UL durchgeführten
Messungen der Nutzsignalleistungen und der GKI. Hieraus werden die ressourcenspezifischen
SINRs berechnet. Anschließend werden die Ressourcen mit den höchsten SINRs
ausgewählt. Durch Anwendung einer Linkadaptionstechnik wird die Menge der ausgewählten
Ressourcen an die Kanalzustände und an die Intensität der gemessenen GKI angepasst.
Die MS unterstützen den Auswahlprozess, indem sie eine Vorschlagsliste mit den im DL
gemessenen GKI an die BS übermitteln. Die BS können die Ressourcenauswahl gemeinsam
für DL und UL durchführen, indem sie ihre eigenen Ranglisten mit den Vorschlägen der
MS verschmelzen. Alternativ kann die Ressourcenauswahl in DL und UL getrennt erfolgen.
Eine Selbstorganisation bietet die maximale Flexibilität beim Einsatz der knappen
Funkressourcen. In einem SO-RRM-System hat jede BS Zugriff auf die gesamte Systembandbreite.
Ressourcen können immer dort ausgewählt werden, wo sie gerade benötigt
werden. Hierdurch lassen sich asymmetrische Benutzeraufkommen wie z. B. Hot Spots
höchst effizient versorgen. Zudem entfällt im Vergleich zu herkömmlichen Mobilfunksystemen
der 2. und 3. Generation die Notwendigkeit einer statischen Vorausplanung des
Ressourcenbedarfs und der von den Funkzellen belegten Frequenzbänder.
SO-RRM bei konstanten Datenraten
Zunächst wurde in Kapitel 7 die Bereitstellung konstanter Datenraten in UL und DL untersucht.
In System-Level-Simulationen wurde gezeigt, dass die in dieser Arbeit vorgeschlagenen
Auswahlalgorithmen zu einem stabilen Netzbetrieb führen. Das SO-RRM-System
wurde gegen ein Referenzsystem mit SRV verglichen. Bereits bei gleichmäßiger Verteilung
der Benutzer im Versorgungsgebiet wurde mit SO-RRM eine höhere Effizienz erzielt.
Seine eigentliche Stärke zeigte das SO-RRM-System im Hot-Spot-Szenario. Während
in einem SRV-System keinerlei Anpassungen an Änderungen des Benutzeraufkommens
möglich sind, können sich SO-RRM-Systeme flexibel an das tatsächliche momentane
Verkehrsaufkommen adaptieren. Hierdurch steigt die Effizienz des SO-RRM-Systems in
asymmetrischen Vekehrsszenarien wie Hot Spots im Vergleich zu herkömmlichen SRVbasierten
Konzepten beträchtlich an.
Zur Bereitstellung konstanter Datenraten wurden sowohl eine gemeinsame als auch
eine getrennte Ressourcenauswahl für DL und UL analysiert. Die besseren Ergebnisse
wurden zunächst bei gemeinsamer Auswahl der Ressourcen für DL und UL erzielt. Eine
getrennte Ressourcenauswahl ist dennoch sinnvoll, wenn in DL und UL unterschiedliche
Datenraten benötigt werden. Es konnte gezeigt werden, dass durch eine Überdeckung des
Ressourcenbedarfs das Systemverhalten bei getrennter Auswahl verbessert werden kann.
Mit dem Ressourcenüberschuss können robustere PHY Modi angewendet werden. Dadurch
werden die Übertragungen robuster gegen mögliche Anstiege der GKI.
SO-RRM im DL bei variablen Datenraten
In Kapitel 8 wurde als zweiter Anwendungsfall die Versorgung mit variablen Datenraten im
DL betrachtet. Dazu wurde eine in DL und UL getrennte Ressourcenauswahl durchgeführt.
Als Erweiterung des SO-RRM-Konzepts wurde für den DL ein Protokoll vorgeschlagen,
mit welchem alle für den DL ausgewählten Ressourcen bedarfsangepasst zwischen den MS
umverteilt werden können. Das Konzept basiert darauf, dass sich hierdurch im DL die in
den umliegenden Zellen wahrgenommenen GKI nicht ändern.
Im erweiterten Konzept wird die Ressourcenauswahl über den Ressourcendeckungsgrad
gesteuert. Dieser wird in jedem Zugriffsrahmen durch einen Vergleich zwischen verfügbarer
und benötigter Gesamtdatenrate bestimmt. Die Auswahl und Freigabe von Ressourcen
erfolgt bei Unter- bzw. Überschreitung vorgegebener Deckungsgradschwellen. Durch geeignete
Wahl der Schwellen kann eine Überdeckung des Ressourcenbedarfs erzielt werden.
Eine solche Ressourcenexpansion erwies sich bereits bei der Versorgung mit konstanten
Datenrate als effizienzsteigernd. Die Auftrittshäufigkeiten von Auswahl- und Freigabeprozessen
werden durch eine Ressourcenexpansion reduziert, sodass die gemessenen GKI über
einen längeren Zeitraum konstant bleiben.
Anhand von Rechnersimulationen wurde gezeigt, dass sich eine Ressourcenexpansion
besonders bei niedriger und mittlerer Systemauslastung positiv auf alle relevanten
QoS-Kennzahlen auswirkt. Bei hoher Systemauslastung jedoch sollte das Ausmaß der
Ressourcenexpansion reduziert werden, damit zusätzliche Benutzer mit den freiwerdenden
Ressourcen versorgt werden können. Zu diesem Zweck wurden systemlastabhängige
Deckungsgradschwellen eingesetzt.
Als wesentliche Neuerung wurde eine Kopplung zwischen den beiden Prozessen Ressourcenauswahl
und Ressourcenzuordnung eingeführt. Die vom Makro-RRM ausgewählten
Ressourcen werden dem Mikro-RRM in einem Ressourcenpool zur Verfügung gestellt. Das
Mikro-RRM ordnet den MS die im Pool befindlichen Ressourcen in jedem Zugriffsrahmen
bedarfsangepasst zu. Anschließend berechnet es den sich aus der aktuellen Zuordnung
ergebenden Deckungsgrad und meldet diesen an das Makro-RRM zurück. Das Makro-RRM
wiederum nutzt den rückgekoppelten Deckungsgrad als Stellgröße für seinen Ressourcenauswahlprozess.
Für die Zuordnung der Ressourcen wurde ein nutzenbasierter Scheduling-Algorithmus
vorgeschlagen. Der Algorithmus berücksichtigt die Momentanzustände sowohl der Paketwarteschlangen
als auch der frequenzselektiven und zeitvarianten Funkkanäle. Hierdurch
kann die in den Funkzellen vorhandene MUD ausgenutzt und die Systemeffizienz gesteigert
werden. Um Fairness zu gewährleisten, wird das Prinzip vom abnehmenden Grenznutzen
angewendet. Der Nutzen einer weiteren Ressource nimmt mit der Menge der Ressourcen
ab, die einem Benutzer bereits zugeordnet wurden. Es zeigte sich, dass insbesondere
die Auswertung der in den Paketwarteschlangen aufgelaufenen Wartezeiten für eine bedarfsgerechte
Zuordnung und für die Fairness in der Zelle entscheidend ist. Durch die
gleichzeitige Berücksichtigung der momentanen Kanalzustände wird bei der nutzenbasierten
Ressourcenzuordnung eine hohe Effizienz erreicht.
Die Kopplung von Mikro- und Makro-RRM bewirkt eine stabile und effiziente Selbstorganisation
auf Gesamtsystemebene und bietet einen effektiven Mechanismus zur Gewährleistung
des QoS bei variablen Datenraten.
ISBN-10 (Impresion) | 3869550465 |
ISBN-13 (Impresion) | 9783869550466 |
ISBN-13 (E-Book) | 9783736930469 |
Idioma | Deutsch |
Numero de paginas | 152 |
Laminacion de la cubierta | mate |
Edicion | 1 Aufl. |
Volumen | 0 |
Lugar de publicacion | Göttingen |
Lugar de la disertacion | TU Hamburg-Harburg |
Fecha de publicacion | 23.07.2009 |
Clasificacion simple | Tesis doctoral |
Area |
Ingeniería eléctrica
|