Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

Premiumpartner
De En Es
Titelbild-leitlinien
Optimierung des Wasserhaushalts eines PEM-Brennstoffzellenaggregats

Impresion
EUR 26,50 EUR 25,18

E-Book
EUR 18,55

Optimierung des Wasserhaushalts eines PEM-Brennstoffzellenaggregats

Rune Staeck (Autor)

Previo

Indice, PDF (97 KB)
Lectura de prueba, PDF (1,4 MB)

ISBN-13 (Impresion) 9783954047567
ISBN-13 (E-Book) 9783736947566
Idioma Deutsch
Numero de paginas 124
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Braunschweig
Fecha de publicacion 10.07.2014
Clasificacion simple Tesis doctoral
Area Ingeniería mecánica y de proceso
Palabras claves Wasserhaushalt, PEM-Brennstoffzelle, Befeuchter, Wasserabschneider
Descripcion

Der Klimaschutz, die unerwünschte Abhängigkeit von den fossilen Energieträgern und das vitale Interesse der Gesellschaft, den Energieverbrauch bei gleich bleibendem Wohlstand und steigendem Ölpreis durch mehr Effizienz zu verringern, geben den Ausschlag zum nachhaltigen Umgang mit Energie. Der Trend zur nachhaltigen Mobilität lässt die Volkswagen AG im Zuge der Elektrifizierung von Fahrzeugen den Polymer-Elektrolyt-Membran (PEM)-Brennstoffzellenantrieb entwickeln.
Das Ziel der vorliegenden Arbeit ist die Optimierung des Wasserhaushalts des Brennstoffzellen-aggregats HyMotion4 der Volkswagen AG mit dem Fokus auf dem Membran-Befeuchter, dem Austragen von Kondensat aus den Strömungskanälen der Brennstoffzellen und dem Kondensatabscheider.
Der Membran-Befeuchter reichert die Reaktionsluft mit Wasser an, das der Abluft separiert wird. Durch die vorgestellte Methode, die Computational Fluid Dynamic (CDF)-Simulationen mit Experimenten verbindet, wird die Permeabilität der Befeuchter-Membranen für Wasser bestimmt. Die Permeabilität, dimensionslose Kennzahlen und die charakteristischen Betriebsbedingungen des Brennstoffzellenaggregats liefern die Befeuchter-Geometrie und dessen Strömungswiderstand. Anhand der Baugröße und des Strömungswiderstands werden die Investition und die Betriebskosten des Befeuchters berechnet und minimiert.
Übermäßige Befeuchtung der Reaktionsluft, Lastwechselvorgänge, die zu Druckänderungen führen, und die inhomogene Gasversorgung der Brennstoffzellen im Stapel können sich in der Kondensation von Wasserdampf in den Zellen auswirken. Die zum Austrag des Kondensats erforderliche Druckdifferenz wird unter Anwendung der CFD-Methode unter Berücksichtigung der Adhäsion berechnet. Aus der Druckdifferenz werden die erforderlichen Ströme an Reaktionsgasen berechnet, die den Austrag von Kondensat und infolge dessen den stabilen Betrieb sicherstellen.
Die ausgetragenen Kondensattropfen werden auf der Anodenseite aus dem Wasserstoffstrom durch den Kondensatabscheider abgeschieden, weil das Anodenabgas dem frischen Wasserstoff beigemengt wird und der Eintrag von Kondensat in die Brennstoffzellen die Reaktion beeinträchtigt. Der axiale Kondensatabscheider wird hinsichtlich des Abscheidegrades, der Baugröße und des Strömungswiderstands ebenfalls unter Anwendung der CFD-Methode optimiert.