Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Untersuchung von Chemical-Looping-Combustion im Megawatt-Maßstab

Impresion
EUR 49,90

E-Book
EUR 34,90

Untersuchung von Chemical-Looping-Combustion im Megawatt-Maßstab (Tienda española)

Peter Georg Ohlemüller (Autor)

Previo

Lectura de prueba, PDF (810 KB)
Indice, PDF (570 KB)

ISBN-13 (Impresion) 9783736999596
ISBN-13 (E-Book) 9783736989597
Idioma Deutsch
Numero de paginas 190
Laminacion de la cubierta mate
Edicion 1.
Lugar de publicacion Göttingen
Lugar de la disertacion Darmstadt
Fecha de publicacion 05.02.2019
Clasificacion simple Tesis doctoral
Area Ingeniería mecánica y de proceso
Palabras claves CLC (Chemica Looping Combustion), CCSU (Carbon Capture and Storage/Utilization), Combustion, CO2 Capture, Oxygen Carrier, Ilmenite, Iron ore, Modelling, Autothermal Operation, Solid Fuel, Gaseous Fuel, Natural Gas, Fluidized Bed, Oxyfuel Technology, Hard Coal, Biomass, Torrefied Fuel, Air Reactor, Fuel Reactor, Techno Economic Evaluation, Attrition, Mechanical Strength, Pilot Plant, Process Simulation, Sensitivity Analysis, Climate Change, Evaluation Parameter, Synthetic Oxygen Carrier, CO2 Avoidance Cost, Pyrolysis, Gasification, Oxidation, Reduction, Hydrodynamics, Allothermal Gasification, Scale up, Negative Emissions, Experimental Investigation, CLOU (Chemical Looping with Oxygen Uncoupling), iG-CLC (in situ Gasification Chemical Looping, Combustion), Verbrennung, CO2 Abscheidung, Sauerstoffträger, Ilmenit, Eisenerz, Modellierung, Autotherme Betriebsweise, Festbrennstoff, Gasförmige Brennstoffe, Erdgas, Wirbelschicht, Oxyfuel Technologie, Steinkohle, Biomasse, Torrefizierter Brennstoff, Luftreaktor, Brennstoffreaktor, Techno Ökonomische Evaluation, Abrieb, Mechanische Festigkeit, Pilotanlage, Prozesssimulation, Sensitivitätsanalyse, Klimawandel, Evaluationsparameter, Synthetischer Sauerstoffträger, CO2 Vermeidungskosten, Pyrolyse, Vergasung, Oxidation, Reduktion, Hydrodynamik, Allotherme Vergasung, Hochskalierung, Negative Emissionen, Experimentelle Untersuchung
Descripcion

Die anthropogenen Treibhausgasemissionen sind mit hoher Wahrscheinlichkeit die Hauptursache für den Anstieg der globalen Durchschnittstemperatur, was erheblichen Einfluss auf unsere gesamte Umwelt hat. Um die Erderwärmung auf weniger als 2 °C im Vergleich zu vorindustriellen Zeiten zu begrenzen, ist die Nutzung von Technologien zur Abscheidung von Kohlenstoffdioxid (CO2) im Energie- und Industriesektor unumgänglich. Um CO2-Abscheideverfahren bei der Strom-, Dampf- und/oder Wärmeproduktion wirtschaftlich nutzen zu können, sind möglichst geringe Zusatzkosten für die Abscheidung von CO2 essentiell. Aufgrund der vernachlässigbaren Wirkungsgradeinbußen ermöglicht das weiterentwickelte Oxyfuel-Verfahren Chemical-Looping-Combustion geringe CO2-Vermeidungskosten und ist somit eine vielversprechende CO2-Abscheidetechnologie.
In der vorliegenden Arbeit werden experimentelle und theoretische Untersuchungen des Verfahrens Chemical-Looping-Combustion im 1 MWth Maßstab präsentiert. Bei diesem Verfahren werden zwei Wirbelschichtreaktoren eingesetzt, welche durch Kopplungselemente miteinander verbunden sind. Ein partikelförmiger Sauerstoffträger wird im ersten Reaktor durch Luftsauerstoff oxidiert und im zweiten Reaktor für die Oxidation eines kohlenstoffhaltigen Brennstoffes verwendet. Somit entstehen Stickstoff mit Restsauerstoff sowie CO2 und Wasserdampf in zwei getrennten Produktströmen. Ausgehend von bestehenden Untersuchungen sind in dieser Arbeit verfahrenstechnische Optimierungen beschrieben und umgesetzt. Während 175 Betriebsstunden Chemical-Looping-Combustion wurde die Performance des Prozesses untersucht, wobei sowohl für gasförmige als auch für feste Brennstoffe autotherme Betriebsbedingungen erzielt werden konnten. Dies stellt einen wichtigen Schritt für eine mögliche Kommerzialisierung dar. Der Umsatz an Festbrennstoff und brennbaren Gasen war niedriger als in anderen Versuchsanlagen, was ausführlich diskutiert ist und auf unterschiedliche Rahmenbedingungen zurückgeführt werden kann.
Insbesondere für Feststoffe sind weitere, modellgestützte Untersuchungen beschrieben, wobei ein Prozesssimulationsmodell entwickelt und mit Versuchsergebnissen validiert wurde. Auf dieser Grundlage folgt eine technisch-ökonomische Diskussion mit Ausführungen über CO2-Vermeidungskosten und Weiterentwicklung des Prozesses. An dieser Stelle wird das technische und wirtschaftliche Potential verschiedener Chemical-Looping-Technologien deutlich.