Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Regressionsmodelle zur Berücksichtigung von Fahrerindividualität in der kognitiven Fahrerverhaltensmodellierung

Impresion
EUR 62,90

E-Book
EUR 44,90

Regressionsmodelle zur Berücksichtigung von Fahrerindividualität in der kognitiven Fahrerverhaltensmodellierung (Volumen 18) (Tienda española)

Manuela Witt (Autor)

Previo

Lectura de prueba, PDF (240 KB)
Indice, PDF (89 KB)

ISBN-13 (Impresion) 9783736973954
ISBN-13 (E-Book) 9783736963955
Idioma Deutsch
Numero de paginas 230
Laminacion de la cubierta mate
Edicion 1
Serie Schriftenreihe des Lehrstuhls Kraftfahrzeugtechnik
Volumen 18
Lugar de publicacion Göttingen
Lugar de la disertacion Dresden
Fecha de publicacion 18.03.2021
Clasificacion simple Tesis doctoral
Area Ingeniería automotriz
Palabras claves Fahrermodell, kognitives Fahrermodell, Fahrerverhalten, Fahrerindividualität, Fahrereigenschaften, Persönlichkeit, Kognition, Alter, Geschlecht, Fahrerfahrung, Fahrroutine, Stress, Fahrsimulatorstudie, Realfahrversuch, Verkehrssicherheit, Assistiertes Fahren, Fahrerassistenzfunktionen, Automatisiertes Fahren, Verkehrssimulation, Stochastic Cognitive Model, prospektive Wirksamkeitsanalyse, Risikobereitschaft, Driving Anger, Sensation Seeking, Geduld, Ängstlichkeit, Impulsivität, Lineare Regression, Regressionsmodell, Regressionsanalyse, Hauptkomponentenanalyse, Fahrgeschwindigkeit, Folgeabstand, Gesetzeskonformität, Geschwindigkeitsüberschreitung, Beschleunigung, Müdigkeit, Fahrerleistung, Fahrverhaltensparameter, Rechtsfahrgebot, Eye Tracking, Informationsverarbeitung, driver model, cognitive driver model, driver behavior, driver individuality, driver characteristics, personality, cognition, age, gender, driving experience, driving routine, stress, driving simulator study, realistic driving study, traffic safety, Assisted Driving, Advanced Driver Assistance Systems, Automated Driving, traffic simulation, Stochastic Cognitive Model, prospective impact assessment, risk tolerance, driving anger, sensation seeking, patience, anxiety, impulsiveness, linear regression, regression model, regression analysis, Principal Component Analysis, driving velocity, following distance, legal compliance, speeding, acceleration, fatigue, driver performance, driving behavior parameters, obligation to drive on the right, eye tracking, information processing
Descripcion

Im Rahmen der Entwicklung assistierter und automatisierter Fahrfunktionen ist die Erhöhung der Verkehrssicherheit ein gemeinsames Bestreben aller Beteiligten (u.a. von Automobilherstellern, Kunden, der Bundesregierung und unabhängigen Testinstituten). Die Methode der agentenbasierten Verkehrssimulation zur gesamthaften Bewertung der Sicherheit dieser Funktionen rückt dabei zunehmend in den Fokus der verfügbaren Testwerkzeuge. Zur adäquaten Simulation des Straßenverkehrs werden valide Modelle für den Fahrer, die Verkehrsumgebung und das Fahrzeug benötigt. Insbesondere die Modellierung menschlichen Fahrerverhaltens stellt eine zentrale Herausforderung dar, die auch die Berücksichtigung von Fahrerindividualität verlangt. Der Einfluss inter- und intraindividueller Fahrereigenschaften wird im Rahmen dieser Dissertation mithilfe von Fahrsimulatorstudien und Realfahrversuchen empirisch untersucht und anhand von Regressionsmodellen quantifiziert. Dabei werden demographische Eigenschaften wie das Alter, das Geschlecht sowie die Fahrroutine, Persönlichkeitseigenschaften wie Sensation Seeking, Risikobereitschaft und Driving Anger sowie veränderliche Fahrerzustände wie Müdigkeit und Stress berücksichtigt. Korrelationen zwischen Fahrerindividualität und stochastischen Verhaltensparametern werden analysiert und anhand von Regressionsanalysen gewichtet.