Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Anwendung von nichtlinearen Regressionsmodellen und der LTS-Schätzung in der Radoptimierung

Printausgabe
EUR 42,90 EUR 40,76

E-Book
EUR 30,03

Anwendung von nichtlinearen Regressionsmodellen und der LTS-Schätzung in der Radoptimierung

Christina Schäfer (Autor)

Vorschau

Inhaltsverzeichnis, Datei (51 KB)
Leseprobe, Datei (240 KB)

ISBN-13 (Printausgabe) 3869555440
ISBN-13 (Printausgabe) 9783869555447
ISBN-13 (E-Book) 9783736935440
Sprache Deutsch
Seitenanzahl 274
Umschlagkaschierung matt
Auflage 1 Aufl.
Band 0
Erscheinungsort Göttingen
Promotionsort Universität Oldenburg
Erscheinungsdatum 10.11.2010
Allgemeine Einordnung Dissertation
Fachbereiche Maschinenbau und Verfahrenstechnik
Beschreibung

Bei der Entwicklung neuer Bauteile sind im Entwicklungsprozess i.d.R. mehrere Schleifen notwendig, um eine optimale Bauteilgestalt zu erhalten. Dieser Prozess wird sehr stark von den Erfahrungen und dem Know-how des Entwicklers bzw. Konstrukteurs beeinflusst. In dieser Dissertation wird eine Methode entwickelt, die auf Basis eines mathematischen Algorithmus zielgerichtet zum optimalen Entwurf des Bauteils führt.
Die in der Dissertation entwickelte Methode zur Bauteilauslegung verbindet die Statistische Versuchsplanung (engl.: Design of Experiments, Abk.: DoE) mit der Finite-Elemente-Methode (Abk.: FEM). Die DoE ermöglicht, den Versuchsaufwand zu reduzieren und einen funktionalen Zusammenhang der einzelnen Konstruktionsparameter des Bauteils herzuleiten. Zur Ableitung dieses Zusammenhanges werden Versuchsinformationen des Bauteils benötigt. Diese werden mittels der FEM-Simulationen generiert. Als konkrete Anwendung dieser Arbeit ist als zu optimierendes Bauteil ein Stahlrad ausgewählt worden.
Der Schwerpunkt in dieser Arbeit wird auf die Verwendung der nichtlinearen Regressionsmodelle, die in die Bauteiloptimierung eingehen, gelegt. Dabei wird eine aufgestellte Behauptung, dass ein nichtlineares Regressionsmodell die physikalisch-technischen Zusammenhänge eines Stahlrades besser beschreiben kann als eine polynomiale Regressionsfunktion, belegt.
Den mathematischen Kern dieser Arbeit stellt die Untersuchung des Verhaltens der nichtlinearen Regressionsmodelle mit Anwendung einer ausreißer-robusten Schätzmethode — der LTS-Schätzung — dar. Dabei wird bei ausgewählten nichtlinearen Regressionsfunktionen auf die Bestimmung der
d-Fülle und des maximalen Bruchpunktes sowie auf die Identifizierbarkeit eingegangen.
Es wird gezeigt, dass die d-Fülle und somit eine untere Schranke für den Bruchpunkt stark vom Versuchsplan und dem Parameterraum abhängt. Zudem ist ein genereller Zusammenhang zwischen der d-Fülle und der Identifizierbarkeit in nichtlinearen Regressionsmodellen, im Gegensatz zu den linearen Modellen, nicht gegeben.