Cuvillier Verlag

33 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Transceiver Technologies for Millimeter-Wave Beam Steering  Applications

Printausgabe
EUR 39,90

E-Book
EUR 28,50

Transceiver Technologies for Millimeter-Wave Beam Steering Applications (Band 71)

Yi-Fan Tsao (Autor)

Vorschau

Leseprobe, PDF (1,9 MB)
Inhaltsverzeichnis, PDF (200 KB)

ISBN-13 (Printausgabe) 9783736977020
ISBN-13 (E-Book) 9783736967021
Sprache Englisch
Seitenanzahl 146
Umschlagkaschierung matt
Auflage 1.
Buchreihe Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Band 71
Erscheinungsort Göttingen
Promotionsort Berlin
Erscheinungsdatum 08.11.2022
Allgemeine Einordnung Dissertation
Fachbereiche Elektrotechnik
Schlagwörter Power amplifier, transceiver, 5G, 5G communication system, millimeter-wave, low-noise power amplifier, RF switch, GaN, wireless communication systems, high data-rate requirements, CMOS-compatible technologies, design methods, transceiver module, phased-array scaling, high-electron mobility transistor technology (HEMT), stacked-FET configuration, RF front-end circuits, T/R module, over-the-air test, array system, beam steering application, SPDT switch design, Low-Noise Power Amplifier (LNPA) Design, Ka-band Dual-band Power Amplifier Design, antenna design, module integration, Dual exponential taper slot antenna (DETSA) design, beam steering network configurations, Butler matrix with Single-Pole-Four-Throw switch, Technological implementation, equivalent isotropically radiated power (EIRP), drahtlose Kommunikationssysteme, hohe Datenratenanforderungen, Spitzendatenrate, Kanalkapazität, Betriebsbandbreite, Millimeterwellenbänder, Benutzerterminal, Basisstation, mm-Wellen Leistungstransistoren, Schaltungstechnik, Schaltungskonzepte, monoltisch integrierten III-V Schaltungstechnologien (MMIC), Transceiver-Module, elektroniosch schwenkbare Antennen (Phased Arrays), rauscharme Leistungsverstärker (LNPA), Leistungsverstärker, Stacked-FET-Konfiguration, Single-Pole-Double-Throw (SPDT), RF-Front-End Schaltungen, DETSA Antennensystem, 5G-Kommunikationssystem, Äquivalente isotrope Strahlungsleistung, Equivalent Isotropic Radiated Power, Komplementärer Metall-Oxid-Halbleiter, Complementary Metal Oxide Semiconductor, Telekommunikationsnormen, Telecommunications Standards, Doppelumschalter, double throw, Rückflussdämpfung, return loss, Rauschzahl, Noise Figure, Oszillationsfrequenz, oscillation frequency, Grenzfrequenz, cutoff frequency
Beschreibung

During the past years, wireless communication systems have been rapidly advancing to meet the high data-rate requirements of various emerging applications. However, the existing transceivers have typically been demonstrated using CMOS-compatible technologies that deliver a relatively low equivalent isotropic radiated power in a small unit cell. Moreover, the particular device characteristics are limiting the linear region for operation. Therefore, the main focus of this dissertation is to present and discuss new design methods for transceivers to solve these issues.
To reduce the complexity of the transceiver module for further phased-array scaling, a low-noise power amplifier design approach is designed using a 0.15-μm GaN-on-SiC high-electron mobility transistor technology (HEMT). Utilizing a traded off interstage matching topology between loss and bandwidth, the conversion loss induced by the matching network could be effectively reduced. A stacked-FET configuration was adopted to enhance the power handling of the RF switch. Further improvement on the isolation bandwidth was investigated using theoretical analysis on the intrinsic effect of the passive HEMTs.
With the successful implementation of the RF front-end circuits, transceiver modules were integrated on Rogers RO3010 substrate. The planar dual exponentially tapered slot antenna phased-array system showed a compact size with simple biasing network compared to the conventional transceiver approach. The presented T/R module was characterized with an over-the-air test at a distance of 1 m, overcoming the free space path loss of 64 dB. It also shows a high flexibility for further integration with a larger number of array systems, which is very promising for future 5G communication systems.