Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
High-Power GaAs-Based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency

Printausgabe
EUR 39,27

E-Book
EUR 27,50

High-Power GaAs-Based Diode Lasers with Novel Lateral Designs for Enhanced Brightness, Threshold and Efficiency (Band 77)

Mohamed Elattar (Autor)

Vorschau

Leseprobe, PDF (330 KB)
Inhaltsverzeichnis, PDF (32 KB)

ISBN-13 (Printausgabe) 9783689520342
ISBN-13 (E-Book) 9783689520472
Sprache Englisch
Seitenanzahl 124
Umschlagkaschierung matt
Auflage 1.
Buchreihe Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Band 77
Erscheinungsort Göttingen
Promotionsort TU Berlin
Erscheinungsdatum 26.07.2024
Allgemeine Einordnung Dissertation
Fachbereiche Ingenieurwissenschaften
Elektrotechnik
Schlagwörter high-power diode laser, lateral design, lateral structuring, self-aligned, eSAS, current confinement, current spreading, lateral carrier accumulation, thermal path, heat flow, thermal lensing, Hochleistungsdiodenlaser, laterales Design, laterale Strukturierung, selbstausrichtend, eSAS, Stromeinschluss, Stromspreizung, laterale Ladungsträgerakkumulation, thermischer Pfad, Wärmefluss, thermische Linsenbildung
Beschreibung

GaAs-based 9xx-nm broad-area diode lasers (BALs) offer the highest optical power (Popt) among diode lasers and the highest conversion efficiency (ηE) among all light sources. Therefore, they are widely used in material processing applications (e.g. metal cutting), which additionally require high beam quality (i.e. low beam parameter product BPP), typically limited in BALs along the lateral axis (BPPlat). Enhancing BAL performance is dependent on identifying the thermal and non-thermal limiting mechanisms, and implementing design changes to minimize their effects. In this work, two novel approaches based on lateral structuring are developed, aiming to overcome different limiting mechanisms acting along the lateral axis. First, the enhanced self-aligned lateral structure (eSAS) is based on integrating structured current-blocking layers outside the BAL stripe to centrally confine current and charge carriers, thereby suppressing lateral current spreading and lateral carrier accumulation. Two eSAS variants are optimized using simulation tools, then realized in multiple wafer processes, followed by characterization of mounted BALs. eSAS BALs exhibit state-of-the-art Popt and lateral brightness (Popt/BPPlat), with clear benefits over standard gain-guided BALs in terms of threshold, BPPlat and peak ηE. The second approach is chip-internal thermal path engineering, based on structured epitaxial layers replaced outside the stripe by heat-blocking materials to centrally confine heat flow. This flattens the lateral temperature profile (i.e. reduces thermal lensing) around the active zone, which is associated with enhanced brightness. Finite-element thermal simulations are used to estimate the benefits of this approach, thereby motivating its practical realization in future studies.