Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Microemulsions as stepping stones to greener organic chemistry

Impresion
EUR 35,60

E-Book
EUR 24,90

Microemulsions as stepping stones to greener organic chemistry (Tienda española)

Nadja Wulff (Autor)

Previo

Indice, PDF (130 KB)
Lectura de prueba, PDF (310 KB)

In organic chemistry the simultaneous solubility of hydrophobic and hydrophilic reactants in a common solvent is an ubiquitous problem. Often either an expensive or a toxic solvent is needed. Alternatively, polar and non polar components are mixed into macroemulsions permitting them to react across the internal interface. However, macroemulsions display a comparatively small interfacial area. Thus, the reaction rate is low. Microemulsions feature an inherent vast interfacial area which facilitates significantly higher reaction rates. Furthermore, they allow a rather simple monitoring of the reaction kinetics by observing changes in the phase behavior. In this work the advantages of microemulsions as efficient reaction media for the photochemically induced Paternò Büchi reaction of pyruvic acid and 1 octene are elucidated. The amphiphilic reaction product 3 hexyl 2 methyloxetane 2 carboxylic acid influences the phase behavior of the microemulsion system significantly. With increasing UV exposure time the point of highest efficiency was shifted to lower temperatures and, interestingly, an increase of efficiency was detected. Hence, the newly created amphiphile acts as an efficient, hydrophobic cosurfactant. Additionally, with small angle neutron scattering and freeze fracture electron microscopy it was shown that the bicontinuous microstructure survives the UV irradiation. Another route towards green organic chemistry was opened by characterization of two new sustainable biosurfactants (mannosylerythritollipids (MEL) and cellobioselipids (CL)) in microemulsions.

ISBN-13 (Impresion) 9783954049097
ISBN-13 (E-Book) 9783736949096
Idioma Inglés
Numero de paginas 166
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Köln
Fecha de publicacion 16.01.2015
Clasificacion simple Tesis doctoral
Area Química orgánica
Físicoquimica
Palabras claves microemulsion, reaction media, photochemistry, cycloaddition, Paterno-Büchi, ultrasound Mikroemulsionen, Reaktionsmedien, Photochemie, Ultraschall, SANS, FFEM