Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz

Impresion
EUR 42,00

E-Book
EUR 29,40

Indium phosphide HBT in thermally optimized periphery for applications up to 300 GHz (Volumen 36) (Tienda española)

Ksenia Nosaeva (Autor)

Previo

Indice, PDF (71 KB)
Lectura de prueba, PDF (280 KB)

ISBN-13 (Impresion) 9783736992870
ISBN-13 (E-Book) 9783736982871
Idioma Inglés
Numero de paginas 154
Edicion 1. Aufl.
Serie Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Volumen 36
Lugar de publicacion Göttingen
Lugar de la disertacion TU Berlin
Fecha de publicacion 21.07.2016
Clasificacion simple Tesis doctoral
Area Ingeniería eléctrica
Descripcion

This work describes the improvement in thermal management of InP double heterojunction bipolar transistors (DHBTs) fabricated with a transferred-substrate process. The availability of nanocrystalline CVD diamond-on-silicon (Si) handle substrates makes it possible to introduce a 10 µm diamond layer into the InP HBT MMIC stack with BCB-embedded transistors, passive elements and metal interconnects using an adhesive wafer-to-wafer bond process with subsequent removal of the Si host-substrate. Vertical thermal via connections through the diamond and BCB were created by applying inductively coupled plasma etching with oxygen plasma and electroplating.

Electrical characterization of transistors after diamond transfer showed no degradation in RF characteristics and an improvement in DC behavior. A reduction in thermal resistance by 74% from 4.2 K/mW to 1.1 K/mW was observed, which to the author’s knowledge is the lowest thermal resistance for 1-finger InP HBTs with 0.8×5 µm2 emitter area. Significant reduction of thermal resistance of multi-finger devices was achieved: from 4.1 K/mW down to 0.7 K/mW for 2-finger HBTs and from 1.53 K/mW down to the recordly small 0.54 K/mW for 3-finger devices.

Based on the developed diamond heat spreader technology, the designed medium-power amplifier delivers a maximum output power of 20 dBm representing the improvement of 4 dBm. Moreover, stable operation of a high-power amplifier with maximum output power of 23 dBm was reached.