Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Nearest Neighbor Methods for the Imputation of Missing Values in Low and High-Dimensional Data

EUR 55,90

EUR 0,00

PDF (6,8 MB)
Open Access CC BY 4.0

Nearest Neighbor Methods for the Imputation of Missing Values in Low and High-Dimensional Data (Tienda española)

Shahla Faisal (Autor)


Lectura de prueba, PDF (740 KB)
Indice, PDF (650 KB)

ISBN-13 (Impresion) 9783736997417
ISBN-13 (E-Book) 9783736987418
Idioma Inglés
Numero de paginas 218
Laminacion de la cubierta Brillante
Edicion 1.
Lugar de publicacion Göttingen
Lugar de la disertacion LMU München
Fecha de publicacion 27.02.2018
Clasificacion simple Tesis doctoral
Area Estadísticas y operación de investigaciones, Matemática para negocios
Palabras claves Missing values, Nearest neighbors, Multiple imputation, High-dimensional data, Mixed-type data, Sequential imputation

Nowadays, due to the advancement and significantly rapid growth in the technology, the collection of high-dimensional data is no longer a tedious task. Regardless of considerable advances in technology over the last few decades, the analysis of high-dimensional data faces new challenges concerning interpretation and integration. One of the major problems in high-dimensional data is the occurrence of missing values. The problem is in particular hard to handle when the distributional forms of the variables are different or the variables are measured on different measurement scales (e.g. binary, multi-categorical, continuous, etc.). Whatever the reason, missing data may occur in all areas of applied research.

The inadequate handling of missing values may lead to biased results and incorrect inference. The standard statistical techniques for analyzing the data require complete cases without any missing observations. The deletion of the cases with missing information to obtain complete data will not only cause the loss of important information but can also affect inferences. In this dissertation, different imputation techniques using nearest neighbors are developed to address the missing data issues in high-dimensional as well as low dimensional data structures.