Areas | |
---|---|
Serie de libros (96) |
1330
|
Letra |
2305
|
Ciencias Naturales |
5357
|
Matemática | 225 |
Informática | 314 |
Física | 976 |
Química | 1354 |
Geociencias | 131 |
Medicina humana | 242 |
Estomatología | 10 |
Veterinaria | 100 |
Farmacia | 147 |
Biología | 830 |
Bioquímica, biología molecular, tecnología genética | 117 |
Biofísica | 25 |
Nutrición | 44 |
Agricultura | 996 |
Silvicultura | 201 |
Horticultura | 20 |
Ecología y conservación de la tierra | 145 |
Ciencias Ingeniería |
1752
|
General |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Lectura de prueba, PDF (250 KB)
Indice, PDF (78 KB)
In face of an accelerating climate change, the reduction and substitution of fossil fuels is crucial to decarbonize energy production. Gas turbines can operate with versatile fuel sources like natural gas and future fuels such as hydrogen and ammonia. In a next future, thermal efficiencies above 65% are expected to be achieved by implementing non-oxide silicon-based (i.e. Si₃N₄, SiC and SiC/SiC) ceramic components. However, water vapor is one of the main combustion products, which leads to rapid corrosion due to the volatilization of the protective SiO₂ layer above 1200 °C. Hence, an in situ generated Yb₂Si₂O₇ double layered environmental barrier coating system composed of silazanes and the active fillers Yb2O3 and Si was processed at 1415 °C for 5 h in air to protect Si3N4, SiC and SiC/SiC from corrosion. The easy to apply coating system exhibits a dense microstructure with a thickness of up to 150 µm, besides an excellent adhesion strength (36.9 ± 6.2 MPa), hardness (6.9 ± 1.6 GPa) and scratch resistance (28 N). It remarkably overcomes over 15 thermal cycles between 1200 and 20 °C and shows almost no mass loss after harsh hot gas corrosion at 1200 °C for 200 h (pH2O = 0.15 atm, v = 100 m s⁻¹).
ISBN-13 (Impresion) | 9783736975828 |
ISBN-13 (E-Book) | 9783736965829 |
Idioma | Inglés |
Numero de paginas | 130 |
Laminacion de la cubierta | mate |
Edicion | 1. |
Serie | Schriftenreihe Keramische Werkstoffe |
Volumen | 16 |
Lugar de publicacion | Göttingen |
Lugar de la disertacion | Bayreuth |
Fecha de publicacion | 25.02.2022 |
Clasificacion simple | Tesis doctoral |
Area |
Química industrial e Ingeniería química
Ingeniería Mecánica de medida Técnicas y tecnología de produccíon Ingeniería automotriz Ingeniería aeroespacial Tecnología del medio ambiente |
Palabras claves | Ammoniak, Beschichtung, Erdgas, Fossile Brennstoffe, Gasturbinen, Heißgaskorrosion, Keramik, Korrosion, Monolith, Nicht-oxidische, Nickelbasissuperlegierung, Oberflächentechnik, Oxidation, Physikalische Gasphasenabscheidung, Plasmaspritzen, Polymerabgeleitete Keramik, Pyrolyse, Schlicker, Seltene Erden, Seltene Erdensilikat, Si3N4, SiC, SiC/SiC, Silazan, Silicium, Siliciumcarbid, Siliciumdioxid, Siliciumnitrid, SiO2, Treibhausgasemissionen, Umweltschutzschichten, Verbrennungsvorgang, Wärmedämmschicht, Wasserdampf, Wasserstoff, Yb2Si2O7, Ytterbiumdisilikat, Ytterbiummonosilikat, Ytterbiumoxid, Yttrium-stabiliziertes Zirconiumoxid, Ammonia, Coating, Natural gas, Fossil fuels, Gas Turbines, Hot gas corrosion, Ceramics, Corrosion, Monolith, Non-oxide, Nickel-based superalloy, Surface technology, Oxidation, Physical vapor deposition, Plasmaspray, Polymer derived ceramics, Pyrolysis, Slurry, Rare-earth, Rare-earth silicates, Si3N4, SiC, SiC/SiC, Silazane, Silicon, Silicon carbide, Silica, Silicon nitride, SiO2, Greenhouse gas emissions, Environmental barrier coatings, Combustion, Thermal Barrier Coatings, Watervapor, Hydrogen, Yb2Si2O7, Ytterbium disilicate, Ytterbium monosilicate, Ytterbium oxide, Yttria stabilized zirconia, keramische Matrix, ceramic matrix, thermische Ausdehnung, thermal expansion, Weibull-Modul, Wasserdampfpartialdruck, water vapor partial pressure, Biegefestigkeit, flexural strength, environmental barrier coatings, Umweltbarrierebeschichtungen, Plasmaspritzen, plasma spraying |
URL para pagina web externa | https://www.cme-keramik.uni-bayreuth.de/de/index.html |