| Areas | |
|---|---|
| Serie de libros (96) |
1367
|
| Nachhaltigkeit |
3
|
| Gesundheitswesen |
1
|
| Letra |
2355
|
| Ciencias Naturales |
5398
|
| Matemática | 229 |
| Informática | 319 |
| Física | 979 |
| Química | 1362 |
| Geociencias | 131 |
| Medicina humana | 243 |
| Estomatología | 10 |
| Veterinaria | 102 |
| Farmacia | 147 |
| Biología | 835 |
| Bioquímica, biología molecular, tecnología genética | 121 |
| Biofísica | 25 |
| Nutrición | 45 |
| Agricultura | 1004 |
| Silvicultura | 201 |
| Horticultura | 20 |
| Ecología y conservación de la tierra | 148 |
| Ciencias Ingeniería |
1786
|
| General |
97
|
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
|
Lectura de prueba, PDF (130 KB)
Indice, PDF (51 KB)
In order to improve knowledge on macromolecular structural formation and self-assembly, this work proposes a physics-based and data-driven multiscale modeling framework capable of describing structural formation on micro-meter and milli-second scales near molecular-level precision. The framework abstracts macromolecules as anisotropic unit objects and models the interactions and environment using data-driven approaches. The models are parameterized in a bottom-up fashion and validated top-down by comparison with literature and collaborator data for self-assembly of three model system: alginate gelation, hepatitis B virus capsids, and the pyruvate dehydrogenase complex.
| ISBN-13 (Impresion) | 9783736979727 |
| ISBN-13 (E-Book) | 9783736969728 |
| Idioma | Inglés |
| Numero de paginas | 296 |
| Laminacion de la cubierta | mate |
| Edicion | 1. |
| Serie | SPE-Schriftenreihe |
| Volumen | 25 |
| Lugar de publicacion | Göttingen |
| Lugar de la disertacion | TU Hamburg |
| Fecha de publicacion | 27.02.2024 |
| Clasificacion simple | Tesis doctoral |
| Area |
Bioquímica, biología molecular, tecnología genética
Biofísica Ingeniería mecánica y de proceso |
| Palabras claves | multiscale modeling, molecular modeling, Molecular Discrete Element Method, MDEM, Discrete Element Method, DEM, coarse-graining, Molecular Dynamics, MD, Langevin dynamics, machine learning, ML, supervised learning, Kriging, macromolecular self-assembly, structural formation simulation, anisotropic macromolecules, assembly pathways, assembly kinetics, molecular collisions, 6D intermolecular interaction potentials, specialized force-fields, molecular binding, bonded interaction, hepatitis B core antigen, HBcAg, capsid formation, virus-like particles, VLP, pyruvate dehydrogenase complex, PDC, alginate, alginic acid, biopolymer, gelation, gel, aerogel, porous nanomaterial, anisotropic diffusion, ion binding model, calcium, proteins, enzymes, multi-enzymatic biocatalysis, metabolic channeling, high performance computing, HLRS, GPU implementation, MUSEN |