Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Konzeption und Aufbau eines Experimentes zur quantenlimitierten Inertialsensorik mit lasergekühlten Rubidiumatomen

Printausgabe
EUR 27,00 EUR 25,65

E-Book
EUR 18,90

Konzeption und Aufbau eines Experimentes zur quantenlimitierten Inertialsensorik mit lasergekühlten Rubidiumatomen

Christian Jentsch (Autor)

Vorschau

Inhaltsverzeichnis, Datei (140 KB)
Leseprobe, Datei (230 KB)

ISBN-13 (Printausgabe) 386537235X
ISBN-13 (Printausgabe) 9783865372352
ISBN-13 (E-Book) 9783736912359
Sprache Deutsch
Seitenanzahl 172
Auflage 1 Aufl.
Band 0
Erscheinungsort Göttingen
Promotionsort Hannover
Erscheinungsdatum 14.10.2004
Allgemeine Einordnung Dissertation
Fachbereiche Physik
Schlagwörter Laserkühlung, Atominterferometrie, Inertialsensoren
Beschreibung

Interferometer beruhend auf Interferenzen von Materiewellen sind in den letzten 15 Jahren von Demonstrationsexperimenten zu hochempfindlichen Sensoren gereift. In der vorliegenden Arbeit wird ein Konzept für ein hochauflösendes Atominterferometer zur Messung von Rotationen und Beschleunigungen basierend auf lasergekühlten Rubidiumatomen (CASI: Cold Atom Sagnac Interferometer) und dessen experimentelle Umsetzung diskutiert. Ziel des Experimentes ist es, die Quantengrenzen eines solchen Inertialsensors zu erschließen und Messstrategien, beispielsweise kontinuierliche gegenüber periodische Messungen, zu bewerten und zu optimieren. Kalte Atome bieten den Vorteil, dass neben den inneren auch die äußeren Freiheitsgrade wie die Driftgeschwindigkeiten durch ein Interferometer präzise kontrolliert werden können. Mit langsamen kalten Atomen ist es so möglich, einen Sensor ohne Einbußen bei der Empfindlichkeit sehr kompakt aufzubauen. Durch den Einsatz zweier entgegenlaufender Ensembles kann zwischen Phasenverschiebungen resultierend aus Rotationen bzw. Beschleunigungen unterschieden werden. Die kalten Rubidiumatome driften gepulst oder kontinuierlich entlang einer flachen Parabelbahn mit einstellbaren longitudinalen Geschwindigkeiten zwischen 3 m/s und 20 m/s durch die Interferometerzone. Die Länge dieser Zone kann zwischen wenigen Millimetern bis hin zu 15 cm variiert werden. Bei einer longitudinalen Geschwindigkeit von 3 m/s ergibt sich mit 108 Atomen/s eine quantenrauschbegrenzte Empfindlichkeit von 1,6×10-9 rad/s√Hz für Rotationen sowie von 1×10-8 m/s2√Hz für Beschleunigungen. Eine Unterschreitung dieses Standardquantenlimits beispielsweise durch gezielte Korrelationen zwischen den beiden entgegenlaufenden Ensembles ist denkbar. Um die Empfindlichkeit von atomaren Inertialsensoren weiter zu steigern, kann die vorteilhafte Umgebung des Weltraums genutzt werden. Satellitenplattformen wie die vorgeschlagene HYPER-Mission bieten vielversprechende Möglichkeiten, mit Auflösungen von etwa 10-12 rad/s√Hz fundamentale Untersuchungen wie den ortsaufgelösten Nachweis des Lense- Thirring-Effektes der Erde durchzuführen.