Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Gas‐phase Synthesis of Silica Nanoparticles: Reaction Kinetics, Synthesis and Characterization

Printausgabe
EUR 26,25 EUR 24,94

E-Book
EUR 18,38

Gas‐phase Synthesis of Silica Nanoparticles: Reaction Kinetics, Synthesis and Characterization

Ali Abdali (Autor)

Vorschau

Inhaltsverzeichnis, PDF (90 KB)
Leseprobe, PDF (120 KB)

ISBN-13 (Printausgabe) 9783954047048
ISBN-13 (E-Book) 9783736947047
Sprache Englisch
Seitenanzahl 138
Umschlagkaschierung glänzend
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Duisburg-Essen
Erscheinungsdatum 25.04.2014
Allgemeine Einordnung Dissertation
Fachbereiche Chemie
Schlagwörter Silica nanoparticles, Gas-phase synthesis, Kinetics, flame reactor, microwave-plasma reactor
Beschreibung

The gas-phase kinetics of the decomposition of tetraethoxysilane (TEOS) and hexamethyldisiloxane (HMDSO) and the formation and growth of silica nanoparticles were studied. The kinetics study was carried out in shock-heated gases with species measurements by high-repetition-rate time-of-flight mass spectrometry. The mass spectra indicate the formation of Si(OH)4 from the decomposition of TEOS while during HMDSO decomposition several Silicon-containing species were found, such as Si atoms, SiO and SiCH3. The ignition-delay time of the precursors in oxygen-containing bath gases was studied by observing the OH* emission signal behind the reflected shock wave. The ignition delay times of TEOS and HMDSO are strongly temperature dependent and the Arrhenius parameters were determined.
Silica-particle formation and growth from TEOS and HMDSO were investigated in a hybrid microwave-plasma hot-wall reactor and a low-pressure premixed H2/O2/Ar flame reactor by in-situ and ex-situ measurements. Particle sizes distributions were determined by particle mass spectrometry and the spatial gas-phase temperature distribution was measured with multi-line NO-LIF thermometry.
The present research work provides data and new understanding of TEOS and HMDSO decomposition kinetics and particle formation and growth of silica nanoparticles in the gas-phase. These data can be used as input for computational fluid dynamics simulations and hence for the design of reactors for the gas-phase synthesis of highly specific nanoparticles.