Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

Premiumpartner
De En Es
Titelbild-leitlinien
Advanced Silicon MMICs for mm-Wave Automotive Radar Front-Ends

Printausgabe
EUR 31,90

E-Book
EUR 22,33

Advanced Silicon MMICs for mm-Wave Automotive Radar Front-Ends (Band 34)

Alexander Kravets (Autor)

Vorschau

Inhaltsverzeichnis, PDF (56 KB)
Leseprobe, PDF (110 KB)

ISBN-13 (Printausgabe) 9783954049868
ISBN-13 (E-Book) 9783736949867
Sprache Englisch
Seitenanzahl 175
Auflage 1. Aufl.
Buchreihe Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Band 34
Erscheinungsort Göttingen
Promotionsort TU Berlin
Erscheinungsdatum 12.06.2015
Allgemeine Einordnung Dissertation
Fachbereiche Elektrotechnik
Beschreibung

This work presents a high-linearity automotive radar front-end at 77 GHz in 0.25 μm SiGe technology. The passive elements were realized using thin-film microstrip lines. A detailed transformer balun synthesis procedure was developed. The realized passive baluns (“rat-race” and transformer) show excellent commonmode rejection ratios exceeding 30 dB and low losses of 2.5 dB. On the active side, a low-gain, high-linearity single stage common-emitter LNA was realized. The selected topology allowed finer trade-off between linearity and sensitivity of the front-end compared to multi-stage LNA solutions. For the mixer, a low-voltage supply, high-linearity, low-noise double-balanced concept was employed. It uses AC-coupling between the two stages, which allowed an independent optimization of transconductance, core sizing, and bias. The transconductance was designed for best noise performance, while the core was chosen for maximum linearity.
A high-fidelity two-channel receiver was realized using these circuit components, which achieved a performance comparable to the published state-of-the-art results in SiGe: Single sideband noise figure better than 16.5 dB, 1 dB compression point exceeding -12 dBm, while consuming moderate 82 mA DC current from a 1.6 V supply for both channels.