Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Demand-Side Integration Programs for Electric Transport Vehicles

Printausgabe
EUR 39,90

E-Book
EUR 0,00

Download
PDF (2 MB)
Open Access CC BY 4.0

Demand-Side Integration Programs for Electric Transport Vehicles (Band 79)

Johannes Schmidt (Autor)

Vorschau

Inhaltsverzeichnis, PDF (54 KB)
Leseprobe, PDF (170 KB)

ISBN-13 (Printausgabe) 9783736991231
ISBN-13 (E-Book) 9783736981232
Sprache Deutsch
Seitenanzahl 204
Umschlagkaschierung glänzend
Auflage 1. Aufl.
Buchreihe Göttinger Wirtschaftsinformatik
Band 79
Erscheinungsort Göttingen
Promotionsort Göttingen
Erscheinungsdatum 13.10.2015
Allgemeine Einordnung Dissertation
Fachbereiche Informatik
Beschreibung

Applying demand-side integration (DSI) programs for electric vehicles (EVs) is important for improving system reliability and assisting in integrating renewables into the energy system. At the same time, EV users are attracted to DSI programs due to their financial benefits. An application context for applying DSI programs for EVs that has not yet been investigated but seems to hold great potential is heavy-duty electric transport vehicles (ETVs) operating in closed transport systems. A particularly favorable characteristic in this area of application is the possibility of pooling these vehicles – each with a considerable battery storage capacity – on company grounds. This cumulative dissertation primarily aims to identify and assess feasible and suitable DSI programs for an ETV fleet. To ensure the practical relevance of the results, the analyses were based on a large-scale electric mobility. It was found that the load-shifting potential of the ETV fleet can be used for a broad range of DSI programs, the most promising of which resulted in a significant potential for cost saving (>30%) compared to uncontrolled charging. Furthermore, the analyses reveal that an ETV fleet can be more profitable than a comparable diesel-powered one. Overall, the results have the potential to convince further fleet operators to use ETVs and adopt DSI solutions, which is crucial for shaping a sustainable transport and energy sector.