Fachbereiche | |
---|---|
Buchreihen (83) |
1157
|
Medienwissenschaften |
15
|
Geisteswissenschaften |
2104
|
Naturwissenschaften |
5224
|
Mathematik | 222 |
Informatik | 304 |
Physik | 969 |
Chemie | 1321 |
Geowissenschaften | 127 |
Humanmedizin | 233 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 90 |
Pharmazie | 144 |
Biologie | 798 |
Biochemie, Molekularbiologie, Gentechnologie | 109 |
Biophysik | 24 |
Ernährungs- und Haushaltswissenschaften | 44 |
Land- und Agrarwissenschaften | 977 |
Forstwissenschaften | 200 |
Gartenbauwissenschaft | 18 |
Umweltforschung, Ökologie und Landespflege | 140 |
Geographie |
1
|
Ingenieurwissenschaften |
1626
|
Allgemein |
83
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Leseprobe, PDF (2,4 MB)
Inhaltsverzeichnis, PDF (640 KB)
ISBN-13 (Printausgabe) | 9783736998810 |
ISBN-13 (E-Book) | 9783736988811 |
Sprache | Englisch |
Seitenanzahl | 174 |
Umschlagkaschierung | matt |
Auflage | 1. |
Buchreihe | Hochschulschriften - Institut für Systembiotechnologie, Universität des Saarlandes |
Band | 6 |
Erscheinungsort | Göttingen |
Promotionsort | Saarbrücken |
Erscheinungsdatum | 26.11.2018 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Mikrobiologie und Biotechnologie
|
Schlagwörter | Ashbya gossypii, Riboflavin, Vitamin B2, 13C tracer, 13C Metabolic flux analysis, Isotope labeling, GC/MS, LC/MS, NMR, Yeast extract, Industrial process, Systems biotechnology, Industrial biotechnology, Metabolic network analysis, Bacillus subtilis, Carbon-one metabolism, Glycine metabolism, Vegetable oil, Rapeseed oil, Overproducer, Vitamin, Riboflavin biosynthesis, Purine biosynthesis, Metabolic engineering, Positional enrichment, Biotechnology, Parallel tracer experiments |
The fungus Ashbya gossypii is an important industrial producer of riboflavin, i.e. vitamin B2. Here, we developed and then used a highly sophisticated set-up of parallel 13C tracer studies with labeling analysis by GC/MS, LC/MS, 1D, and 2D NMR to resolve carbon fluxes and obtain a detailed picture of the underlying metabolism in the overproducing strain A. gossypii B2 during growth and riboflavin production from a complex industrial medium using vegetable oil as carbon source. Glycine was exclusively used as carbon-two – but not carbon-one (C1) – donor of the vitamin’s pyrimidine ring due to the proven absence of a functional glycine cleavage system. Yeast extract was the main carbon source during growth, while still contributing 8 % overall carbon to riboflavin. Overall carbon flux from rapeseed oil into riboflavin equaled 80 %. Transmembrane formate flux simulations revealed that the C1-supply displayed a severe bottleneck during the initial riboflavin production, which was overcome in later phases of the cultivation by intrinsic formate accumulation. The transiently limiting C1-pool was successfully replenished by time-resolved feeding of formate or serine. This increased the intracellular precursor availability and resulted in a riboflavin titer increase of 45 %. This study is the first that successfully sheds light on carbon fluxes during the growth and riboflavin production phase by use of 13C tracers and a complementary platform of analytical techniques.