Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Numerical study of the stimulation related thermo-hydro-mechanical processes in tight gas and deep geothermal reservoirs

Printausgabe
EUR 62,90

E-Book
EUR 44,00

Numerical study of the stimulation related thermo-hydro-mechanical processes in tight gas and deep geothermal reservoirs (Band 64)

Wentao Feng (Autor)

Vorschau

Inhaltsverzeichnis, PDF (610 KB)
Leseprobe, PDF (1,5 MB)

ISBN-13 (Printausgabe) 9783736971707
ISBN-13 (E-Book) 9783736961708
Sprache Englisch
Seitenanzahl 204
Umschlagkaschierung matt
Auflage 1.
Buchreihe Schriftenreihe des Energie-Forschungszentrums Niedersachsen (EFZN)
Band 64
Erscheinungsort Göttingen
Promotionsort Clausthal
Erscheinungsdatum 05.03.2020
Allgemeine Einordnung Dissertation
Fachbereiche Ingenieurwissenschaften
Schlagwörter Reservoir Stimulation, Hydraulic Fracturing, FLAC3Dplus, TOUGH2MP-FLAC3D, Fluid Viscosity’s Influences, Shaping of a stimulated fracture, Thermal effects, Proppant Distribution, Damage Model, Real Case, Geothermal Energy, Natural Gas, Enhanced Geothermal System, Deep Geothermal Reservoir, Unconventional Gas Reservoir, Tight Gas, Hot Dry Rock, Tight Sandstone, Porous Medium, Geothermal Operation, Numerical Simulation, THM Coupling, Finite Volume Method, Finite Difference Method, Explicit Euler Method, Implicit Euler Method, 3D Model, Simulation of Fracture Propagation with arbitrary orientation, Heat transport
URL zu externer Homepage https://www.efzn.de/de/ueber-uns/oeffentlichkeitsarbeit/efzn-schriftenreihe/
Beschreibung

Hydraulic fracturing in combination with horizontal well is playing a key role in the efficient development of unconventional gas/oil reservoirs and deep geothermal resources. However, the integral operation, especially from the perspective of THM (Thermal-Hydraulic-Mechanic) interactions have not been studied systematically. In this thesis, targeted improvements were achieved through developing a series of mathematical/physical models, and their implementation into the existing numerical tools (FLAC3Dplus and TOUGH2MP-FLAC3D), including: (a) a new thermal module for FLAC3Dplus based entirely on the finite volume method (FVM), which is especially developed for the fracturing process and can also achieve the modeling of gel breaking; (b) a rock damage module of TOUGH2MP-FLAC3D, which also considers the impacts of rock damaging process on evolution of permeability; © an in-depth improved FLAC3Dplus simulator that obtains the ability to simulate a 3D fracture propagation with arbitrary orientation. After the corresponding verifications, the improved tools were applied in different case studies to reveal: a) influences of the fluid’s viscosity on the fracturing results in tight sandstone reservoirs; b) the induced seismicity during the fracturing operation and the reactivation of the natural faults; and c) the fracture propagation with arbitrary orientation.