Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Numerische Modellierung der lokalen mechanischen Beanspruchbarkeit eines epoxidharzbasierten Schaltungsträgersubstrats

Printausgabe
EUR 71,88

E-Book
EUR 51,00

Numerische Modellierung der lokalen mechanischen Beanspruchbarkeit eines epoxidharzbasierten Schaltungsträgersubstrats

Michael Schmidt (Autor)

Vorschau

Inhaltsverzeichnis, PDF (700 KB)
Leseprobe, PDF (1,2 MB)

ISBN-13 (Printausgabe) 9783736975477
ISBN-13 (E-Book) 9783736965478
Sprache Deutsch
Seitenanzahl 146
Umschlagkaschierung matt
Auflage 1.
Erscheinungsort Göttingen
Promotionsort Berlin
Erscheinungsdatum 23.12.2021
Allgemeine Einordnung Dissertation
Fachbereiche Elektrotechnik
Schlagwörter Printed Circuit Board (PCB), Basismaterial, Schaltungsträger, Polymermatrix, Finite-Elemente-Methode (FEM), Pad Cratering, Ball Grid Array (BGA), Materialcharakterisierung, Three Network Model (TNM), Glasfasergewebe, lineare Viskoelastizität, Prony-Reihe, Rissinitiierung, Schaltungsträgersubstart, Materialbeanspruchbarkeit, lokale Materialbeanspruchbarkeit, Epoxidharz, lineare Elastizität, Anisotropie, Orthotropie, Viskoplastizität, nichtlineare Viskoelastizität, thermischer Ausdehnungskoeffizient, Prepreg, Thermomechanische Analyse (TMA), Dynamisch mechanisch thermische Analyse (DMTA), Dynamisch mechanische Analyse (DMA), Zugversuch, Relaxationsversuch, thermo-oxidative Alterung, Materialalterung, Utra-Mikro-Indentation (UMI), numerische Modellierung, anormale Diffusion, Fick'sches Gesetz, Diffusionskoeffizienz, Aktivierungsenergie, Arrhenius-Ansatz, Glasfaserverbundwerkstoff, Kett, Schuss, Faser-Matrix-Delamination, Masterkurve, Verschiebungsfaktoren, Bergström-Boyce (BB), Acht-Ketten-Modell, Arruda-Boyce-Modell, Simulation, Scherversuch, Bruchdehnung, Bruchspannung, Dehnrate, isotherme Auslagerung, Prüfkörpergeometrie
Beschreibung

Organische Schaltungsträger verwenden als Basismaterial überwiegend Glasfaserverbundwerkstoffe, die im Zuge der automobilen Megatrends der Elektromobilität und des autonomen Fahrens hohen Zuverlässigkeitsanforderungen gerecht werden müssen. Neben einem vollständig anisotropen Materialverhalten von Schaltungsträgersubstraten führt das in die Polymermatrix eingebrachte Glasfasergewebe durch seinen sinusförmigen Verlauf zu Unterschieden in den lokalen Materialeigenschaften und deren Beanspruchbarkeit, die in gegenwärtig verwendeten numerischen Modellierungsansätzen vollkommen unberücksichtigt bleiben. In der vorliegenden Arbeit wird eine Methodik zur Modellierung der lokalen mechanischen Beanspruchbarkeit von organischen Schaltungsträgersubstraten über die Produktlebensdauer entwickelt. Neben der Ermittlung des thermomechanischen Materialverhaltens einer epoxidharzbasierten Polymermatrix eines organischen Schaltungsträgersubstrats wird ein Ansatz zur numerischen Modellierung des vollständigen Materialverhaltens entwickelt, angewendet und an einem relevanten Fehlerbild validiert. Die entwickelte Modellierungsmethodik ermöglicht damit die Berücksichtigung der lokalen Materialbelastbarkeit im simulationsgestützten Entwicklungsprozess elektronischer Steuergeräte und liefert damit einen neuartigen Beitrag zur Erhöhung der Simulationsgenauigkeit und zur Zuverlässigkeitsoptimierung von Baugruppen im Hinblick auf die aus den automobilen Megatrends resultierenden Anforderungen an organische Schaltungsträgersubstrate.