Cuvillier Verlag

Publications, Dissertations, Habilitations & Brochures.
International Specialist Publishing House for Science and Economy

Cuvillier Verlag

De En Es
Numerische Modellierung der lokalen mechanischen Beanspruchbarkeit eines epoxidharzbasierten Schaltungsträgersubstrats

Hard Copy
EUR 59.90

E-book
EUR 42.50

Numerische Modellierung der lokalen mechanischen Beanspruchbarkeit eines epoxidharzbasierten Schaltungsträgersubstrats (English shop)

Michael Schmidt (Author)

Preview

Table of Contents, PDF (700 KB)
Extract, PDF (1.2 MB)

ISBN-13 (Hard Copy) 9783736975477
ISBN-13 (eBook) 9783736965478
Language Alemán
Page Number 146
Lamination of Cover matt
Edition 1.
Publication Place Göttingen
Place of Dissertation Berlin
Publication Date 2021-12-23
General Categorization Dissertation
Departments Electrical engineering
Keywords Printed Circuit Board (PCB), Basismaterial, Schaltungsträger, Polymermatrix, Finite-Elemente-Methode (FEM), Pad Cratering, Ball Grid Array (BGA), Materialcharakterisierung, Three Network Model (TNM), Glasfasergewebe, lineare Viskoelastizität, Prony-Reihe, Rissinitiierung, Schaltungsträgersubstart, Materialbeanspruchbarkeit, lokale Materialbeanspruchbarkeit, Epoxidharz, lineare Elastizität, Anisotropie, Orthotropie, Viskoplastizität, nichtlineare Viskoelastizität, thermischer Ausdehnungskoeffizient, Prepreg, Thermomechanische Analyse (TMA), Dynamisch mechanisch thermische Analyse (DMTA), Dynamisch mechanische Analyse (DMA), Zugversuch, Relaxationsversuch, thermo-oxidative Alterung, Materialalterung, Utra-Mikro-Indentation (UMI), numerische Modellierung, anormale Diffusion, Fick'sches Gesetz, Diffusionskoeffizienz, Aktivierungsenergie, Arrhenius-Ansatz, Glasfaserverbundwerkstoff, Kett, Schuss, Faser-Matrix-Delamination, Masterkurve, Verschiebungsfaktoren, Bergström-Boyce (BB), Acht-Ketten-Modell, Arruda-Boyce-Modell, Simulation, Scherversuch, Bruchdehnung, Bruchspannung, Dehnrate, isotherme Auslagerung, Prüfkörpergeometrie
Description

Organische Schaltungsträger verwenden als Basismaterial überwiegend Glasfaserverbundwerkstoffe, die im Zuge der automobilen Megatrends der Elektromobilität und des autonomen Fahrens hohen Zuverlässigkeitsanforderungen gerecht werden müssen. Neben einem vollständig anisotropen Materialverhalten von Schaltungsträgersubstraten führt das in die Polymermatrix eingebrachte Glasfasergewebe durch seinen sinusförmigen Verlauf zu Unterschieden in den lokalen Materialeigenschaften und deren Beanspruchbarkeit, die in gegenwärtig verwendeten numerischen Modellierungsansätzen vollkommen unberücksichtigt bleiben. In der vorliegenden Arbeit wird eine Methodik zur Modellierung der lokalen mechanischen Beanspruchbarkeit von organischen Schaltungsträgersubstraten über die Produktlebensdauer entwickelt. Neben der Ermittlung des thermomechanischen Materialverhaltens einer epoxidharzbasierten Polymermatrix eines organischen Schaltungsträgersubstrats wird ein Ansatz zur numerischen Modellierung des vollständigen Materialverhaltens entwickelt, angewendet und an einem relevanten Fehlerbild validiert. Die entwickelte Modellierungsmethodik ermöglicht damit die Berücksichtigung der lokalen Materialbelastbarkeit im simulationsgestützten Entwicklungsprozess elektronischer Steuergeräte und liefert damit einen neuartigen Beitrag zur Erhöhung der Simulationsgenauigkeit und zur Zuverlässigkeitsoptimierung von Baugruppen im Hinblick auf die aus den automobilen Megatrends resultierenden Anforderungen an organische Schaltungsträgersubstrate.