Fachbereiche | |
---|---|
Buchreihen (96) |
1331
|
Geisteswissenschaften |
2308
|
Naturwissenschaften |
5357
|
Mathematik | 225 |
Informatik | 314 |
Physik | 976 |
Chemie | 1354 |
Geowissenschaften | 131 |
Humanmedizin | 242 |
Zahn-, Mund- und Kieferheilkunde | 10 |
Veterinärmedizin | 100 |
Pharmazie | 147 |
Biologie | 830 |
Biochemie, Molekularbiologie, Gentechnologie | 117 |
Biophysik | 25 |
Ernährungs- und Haushaltswissenschaften | 44 |
Land- und Agrarwissenschaften | 996 |
Forstwissenschaften | 201 |
Gartenbauwissenschaft | 20 |
Umweltforschung, Ökologie und Landespflege | 145 |
Ingenieurwissenschaften |
1753
|
Allgemein |
92
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Inhaltsverzeichnis, Datei (100 KB)
Leseprobe, Datei (510 KB)
In the work at hand the interplay between molecules as well as molecules and substrate is studied in ultrahigh vacuum (UHV).
In Chapter 3 hydrogen-bond (H-bond) recognition, which is based on an H-bonding motif well-known in supramolecular chemistry, is investigated on Ag(111) for a three component system. Moreover, for one of the molecules a thermally induced phase transition from a porous network to a close-packed structure is found. Scanning tunneling microscopy (STM) and low energy electron diffraction (LEED) show that both surface structures exhibit long-range order and are commensurate with the Ag-substrate. In particular, this transition involves a conformational change of each molecule that is not observed in solution.
Chapter 4 deals with the study of intermolecular interactions of the perylene derivative 1,3,8,10-tetraazaperopyrene (TAPP) on Cu(111). Different surface structures are observed which exhibit different types of intermolecular interactions. Surface structures formed by TAPP molecules interacting via weak van-der-Waals forces are transformed into a long-range-ordered porous network upon annealing. For this network, which is commensurate to the substrate, the intermolecular interactions are based on the coordination of Cu-adatoms to the N-atoms of TAPP. Upon further annealing covalent C-C couplings between TAPP molecules result in the formation of chains. X-ray photoelectron spectroscopy (XPS) and computational studies using density functional theory (DFT) show that the N-atoms of the chains can coordinate to Cu-adatoms as well. Moreover, in a preliminary study the attempt was undertaken to create polymerized structures in two dimensions. However, the formation of ordered structures is a challenging task since self-correction that is inherent to weak reversible interactions is missing.
The molecule-surface interaction of a long-range-ordered porous network formed by the perylene derivative 4,9-diaminoperylene-quinone-3,10-diimine (DPDI) on Cu(111) is studied in Chapter 5. This network whose molecular building-blocks interact via H-bonds exhibits an extraordinary stability. In particular, the molecular adsorption height above the Cu surface determined by X-ray standing wave experiments (XSW) indicates that the molecular perylene core is not directly involved in a strong interaction with the surface. Thus, it is assumed that Cu-adatoms interact with the molecular N-atoms in order to explain the stability of the network. Moreover, scanning tunneling spectroscopy (STS) and angle-resolved photoemission spectroscopy (ARPES) reveal the formation of an electronic band which is induced by the periodic influence of the molecular network on the surface state of Cu(111).
ISBN-13 (Printausgabe) | 3869551968 |
ISBN-13 (Printausgabe) | 9783869551968 |
ISBN-13 (E-Book) | 9783736931961 |
Sprache | Englisch |
Seitenanzahl | 122 |
Umschlagkaschierung | glänzend |
Auflage | 1 Aufl. |
Band | 0 |
Erscheinungsort | Göttingen |
Promotionsort | Universität Basel |
Erscheinungsdatum | 28.12.2009 |
Allgemeine Einordnung | Dissertation |
Fachbereiche |
Physik
|