Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Inverse Fan-Beam X-ray Diffraction Imaging with Applications in Liquids Identification

Impresion
EUR 23,45 EUR 22,28

E-Book
EUR 16,42

Inverse Fan-Beam X-ray Diffraction Imaging with Applications in Liquids Identification (Tienda española)

Johannes Delfs (Autor)

Previo

Lectura de prueba, PDF (140 KB)
Indice, PDF (47 KB)

ISBN-13 (Impresion) 9783954044429
ISBN-13 (E-Book) 9783736944428
Idioma Inglés
Numero de paginas 126
Laminacion de la cubierta Brillante
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Hamburg
Fecha de publicacion 28.06.2013
Clasificacion simple Tesis doctoral
Area Física
Palabras claves X-ray Diffraction Imaging, Inverse Fan-Beam, Multi-directional Primary Collimator, Liquids Identification, Liquid Explosives Detection, Airport Baggage Inspection, Physik der kondensierten Materie
URL para pagina web externa http://www.physnet.uni-hamburg.de
Descripcion

The Inverse Fan-beam (IF) confi guration for X-ray Diffraction Imaging (XDI) and its capability of identifying liquid and amorphous substances for the purpose of explosive detection are described and investigated. Material specifi c information can be obtained by measuring x-ray diffraction profi-les from selected volume elements within inhomogeneous extended objects. This new technique can be used to fi ngerprint liquid explosives and may eliminate the inconvenience, uncertainty, and expense associated with monitoring liquids separately from hand luggage at airport checkpoints. Design concepts for multi-detector arrangements, a multidirectional primary collimator and the scatter imaging collimator are presented and evaluated using numerical procedures.
A computer program using ray-tracing methods is described for calculating the primary beam profi le, the scattering angle distribution, and the radiation effi ciency with respect to the x-ray collimation geometry. Synchrotron x-ray diffraction measurements were performed on various liquids which are of interest for security applications. The diffraction profi les are presented and the key features which are potentially suitable for the purpose of explosive detection identifi ed. Material specific information is obtained about the morphology and its effective atomic number.
Several additional parameters describing the structure and density of the object under investigation can be derived from the peaks in the molecular interference function.