Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Mimicking the [Fe] Hydrogenase Active Site

Impresion
EUR 45,90

E-Book
EUR 0,00

Download
PDF (3,7 MB)
Open Access CC BY 4.0

Mimicking the [Fe] Hydrogenase Active Site (Tienda española)

Transition Metal Frustrated Lewis Pairs for the Heterolytic Cleavage of Dihydrogen

Kai Kalz (Autor)

Previo

Indice, PDF (35 KB)
Lectura de prueba, PDF (120 KB)

ISBN-13 (Impresion) 9783954048908
ISBN-13 (E-Book) 9783736948907
Idioma Inglés
Numero de paginas 234
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Göttingen
Fecha de publicacion 12.12.2014
Clasificacion simple Tesis doctoral
Area Química
Química inorgánica
Química orgánica
Palabras claves Bioanorganische Chemie, Anorganische Chemie, Organische Chemie, Metallorganische Chemie, [FE] Hydrogenase, Frustrierte Lewis-Paare, Wasserstoffaktivierung
Descripcion

The world’s continuously increasing demand for energy, as well as the need to find an environmentally benign alternative to fossil fuels, have motivated the search for a sustainable energy supply. In this respect, dihydrogen is seen among the most promising energy carriers of the future. First steps towards implementing a so-called “hydrogen economy” have already been made, but problems associated with the efficient production, storage and activation of dihydrogen still persist. Fortunately, nature provides valuable inspiration for the development of novel catalysts which could tackle the existing scientific and technical challenges.

This work draws on parallels between a class of naturally occurring dihydrogen activating and producing enzymes called hydrogenases, and the relatively new concept of chemical bond activation by so-called frustrated Lewis pairs. Using this bioinspired approach, a simplified model system capable of heterolytic H2 splitting akin to the H2 splitting occurring in the [Fe] hydrogenase enzyme could be synthesized and analyzed in detail. The results described in this work therefore contribute to a better understanding of the natural enzymes and provide future directions for the development of novel dihydrogen activation and production catalysts.