Cookies helfen uns bei der Bereitstellung unserer Dienste. Durch die Nutzung unserer Dienste erklären Sie sich damit einverstanden, dass wir Cookies setzen.

Cuvillier Verlag

30 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Mimicking the [Fe] Hydrogenase Active Site

Printausgabe
EUR 45,90

E-Book
EUR 32,13

Mimicking the [Fe] Hydrogenase Active Site

Transition Metal Frustrated Lewis Pairs for the Heterolytic Cleavage of Dihydrogen

Kai Kalz (Autor)

Vorschau

Inhaltsverzeichnis, PDF (35 KB)
Leseprobe, PDF (120 KB)

ISBN-13 (Printausgabe) 9783954048908
ISBN-13 (E-Book) 9783736948907
Sprache Englisch
Seitenanzahl 234
Umschlagkaschierung matt
Auflage 1. Aufl.
Erscheinungsort Göttingen
Promotionsort Göttingen
Erscheinungsdatum 12.12.2014
Allgemeine Einordnung Dissertation
Fachbereiche Chemie
Anorganische Chemie
Organische Chemie
Schlagwörter Bioanorganische Chemie, Anorganische Chemie, Organische Chemie, Metallorganische Chemie, [FE] Hydrogenase, Frustrierte Lewis-Paare, Wasserstoffaktivierung
Beschreibung

The world’s continuously increasing demand for energy, as well as the need to find an environmentally benign alternative to fossil fuels, have motivated the search for a sustainable energy supply. In this respect, dihydrogen is seen among the most promising energy carriers of the future. First steps towards implementing a so-called “hydrogen economy” have already been made, but problems associated with the efficient production, storage and activation of dihydrogen still persist. Fortunately, nature provides valuable inspiration for the development of novel catalysts which could tackle the existing scientific and technical challenges.

This work draws on parallels between a class of naturally occurring dihydrogen activating and producing enzymes called hydrogenases, and the relatively new concept of chemical bond activation by so-called frustrated Lewis pairs. Using this bioinspired approach, a simplified model system capable of heterolytic H2 splitting akin to the H2 splitting occurring in the [Fe] hydrogenase enzyme could be synthesized and analyzed in detail. The results described in this work therefore contribute to a better understanding of the natural enzymes and provide future directions for the development of novel dihydrogen activation and production catalysts.