Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.
De En Es
Kundenservice: +49 (0) 551 - 547 24 0

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

Premiumpartner
De En Es
Titelbild-leitlinien
Efficient frequency doubling of near-infrared diode lasers using quasi phase-matched waveguides

Impresion
EUR 27,90

E-Book
EUR 19,53

Efficient frequency doubling of near-infrared diode lasers using quasi phase-matched waveguides (Volumen 32) (Tienda española)

Daniel Jedrzejczyk (Autor)

Previo

Indice, PDF (51 KB)
Lectura de prueba, PDF (140 KB)

ISBN-13 (Impresion) 9783954049585
ISBN-13 (E-Book) 9783736949584
Idioma Inglés
Numero de paginas 134
Edicion 1. Aufl.
Serie Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Volumen 32
Lugar de publicacion Göttingen
Lugar de la disertacion TU Berlin
Fecha de publicacion 12.05.2015
Clasificacion simple Tesis doctoral
Area Física
Descripcion

Single-pass frequency doubling of near-infrared (NIR) diode lasers in nonlinear bulk crystals allows to realize compact lasers in the green spectral region, offering continuous-wave (CW) laser radiation characterized by a high spectral brightness. In order to increase the efficiency of such laser systems, the application of quasi phase-matched waveguide structures instead of bulk crystals is investigated theoretically and experimentally. In particular, a complemented study of second-harmonic generation (SHG) in periodically poled MgO-doped lithium niobate (MgO:LN) ridge and planar waveguides is conducted. This study aims at identifying benefits and limitations for both geometries with respect to maximum conversion efficiency and accessible power.
The application of waveguide structures presented in this thesis results in a distinct improvement of the opto-optical conversion efficiency – from approximately 20 % in a bulk crystal to almost 30 % in a planar waveguide, and to around 40 % in a ridge waveguide. A maximum second-harmonic power of nearly 0.4 W in a ridge waveguide and 1.2 W in planar waveguide is reached. The generated laser radiation in the green spectral range is characterized by a single-frequency spectrum and nearly diffrac-tion-limited beam quality and thus ideally suited for applications in bio-medicine, bio-technology, and spectroscopy.