Cuvillier Verlag

35 Jahre Kompetenz im wissenschaftlichen Publizieren
Internationaler Fachverlag für Wissenschaft und Wirtschaft

Cuvillier Verlag

De En Es
Efficient frequency doubling of near-infrared diode lasers using quasi phase-matched waveguides

Printausgabe
EUR 27,90

E-Book
EUR 0,00

Download
PDF (2,5 MB)
Open Access CC BY 4.0

Efficient frequency doubling of near-infrared diode lasers using quasi phase-matched waveguides (Band 32)

Daniel Jedrzejczyk (Autor)

Vorschau

Inhaltsverzeichnis, PDF (51 KB)
Leseprobe, PDF (140 KB)

ISBN-13 (Printausgabe) 9783954049585
ISBN-13 (E-Book) 9783736949584
Sprache Englisch
Seitenanzahl 134
Auflage 1. Aufl.
Buchreihe Innovationen mit Mikrowellen und Licht. Forschungsberichte aus dem Ferdinand-Braun-Institut, Leibniz-Institut für Höchstfrequenztechnik
Band 32
Erscheinungsort Göttingen
Promotionsort TU Berlin
Erscheinungsdatum 12.05.2015
Allgemeine Einordnung Dissertation
Fachbereiche Physik
Beschreibung

Single-pass frequency doubling of near-infrared (NIR) diode lasers in nonlinear bulk crystals allows to realize compact lasers in the green spectral region, offering continuous-wave (CW) laser radiation characterized by a high spectral brightness. In order to increase the efficiency of such laser systems, the application of quasi phase-matched waveguide structures instead of bulk crystals is investigated theoretically and experimentally. In particular, a complemented study of second-harmonic generation (SHG) in periodically poled MgO-doped lithium niobate (MgO:LN) ridge and planar waveguides is conducted. This study aims at identifying benefits and limitations for both geometries with respect to maximum conversion efficiency and accessible power.
The application of waveguide structures presented in this thesis results in a distinct improvement of the opto-optical conversion efficiency – from approximately 20 % in a bulk crystal to almost 30 % in a planar waveguide, and to around 40 % in a ridge waveguide. A maximum second-harmonic power of nearly 0.4 W in a ridge waveguide and 1.2 W in planar waveguide is reached. The generated laser radiation in the green spectral range is characterized by a single-frequency spectrum and nearly diffrac-tion-limited beam quality and thus ideally suited for applications in bio-medicine, bio-technology, and spectroscopy.