Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Studies of New Pyrazolate-Based Binuclear Ruthenium Complexes for Catalytic Water Oxidation

Impresion
EUR 59,00

Studies of New Pyrazolate-Based Binuclear Ruthenium Complexes for Catalytic Water Oxidation (Tienda española)

Anett Carolin Sander (Autor)

Previo

Indice, PDF (44 KB)
Lectura de prueba, PDF (310 KB)

ISBN-13 (Impresion) 9783736991866
Idioma Inglés
Numero de paginas 284
Laminacion de la cubierta mate
Edicion 1. Aufl.
Lugar de publicacion Göttingen
Lugar de la disertacion Göttingen
Fecha de publicacion 15.01.2016
Clasificacion simple Tesis doctoral
Area Química
Química inorgánica
Descripcion

The world’s energy consumption is predicted to increase significantly over the coming decades. Diminishing fossil energy resources and the target to reduce greenhouse gas emission make new technologies a necessity to meet future energy demands. Thus, the exploitation of renewable energy sources is of prime interest in chemical research today. In nature, photosynthesis uses solar energy to split water, generating protons and reducing equivalents for the production of organic material. The oxidative half-reaction of water splitting, that is, the generation of dioxygen, is a thermodynamically and kinetically demanding 4e-/4H+ process and is therefore considered to be the bottleneck of this approach. Developing rugged and highly efficient catalysts for this water oxidation reaction is a major challenge in this research field.
The herein presented work introduces a number of new rationally designed pyrazolate-based diruthenium complexes as water oxidation catalysts, emphasizing the favourable preorganisation of two metal ions in one system for binding of two water molecules at a distance adequate for O-O bond formation. Thorough characterisation of the complexes using a wide range of analytical techniques and fundamental investigation of water oxidation catalysis – both chemically and electrochemically – allow deep insight into the water oxidation reaction and influences of different ligand designs on catalytic performances. The results described in this work contribute to a better understanding of the possibility to rationally design water oxidation catalysts on a molecular basis.