Las cookies nos ayudan a ofrecer nuestros servicios. Al utilizar nuestros servicios, aceptas el uso de cookies.

Editorial Cuvillier

Publicaciones, tesis doctorales, capacitaciónes para acceder a una cátedra de universidad & prospectos.
Su editorial internacional especializado en ciencias y economia

Editorial Cuvillier

De En Es
Towards a Theory for Designing Machine Learning Systems for Complex Decision Making Problems

Impresion
EUR 56,10

E-Book
EUR 39,30

Towards a Theory for Designing Machine Learning Systems for Complex Decision Making Problems (Volumen 101) (Tienda española)

Schahin Tofangchi (Autor)

Previo

Indice, PDF (530 KB)
Lectura de prueba, PDF (1,1 MB)

ISBN-13 (Impresion) 9783736972001
ISBN-13 (E-Book) 9783736962002
Idioma Inglés
Numero de paginas 202
Edicion 1.
Serie Göttinger Wirtschaftsinformatik
Volumen 101
Lugar de publicacion Göttingen
Lugar de la disertacion Göttingen
Fecha de publicacion 21.04.2020
Clasificacion simple Tesis doctoral
Area Economía
Informática
Palabras claves maschinelles Lernen, künstliche Intelligenz, Big-Data-Analytics, Expertensysteme, verteiltes maschinelles Lernen, Online-Learning, autonome Agenten, medizinische Entscheidungsunterstützungssysteme, personalisierte Systeme, machine learning, artificial intelligence, big data analytics, expert system, distributed machine learning, online learning, autonomous agents, medical decision support systems, personalized systems, Research Agenda, Motivation, Consumer-Centric, Framework, Domain-Specific, Environment, Percepts, Actuators, Forschungsagenda, Motivation, Verbraucherzentriert, Rahmenwerk, Bereichsspezifisch, Umwelt, Wahrnehmungen, Stellantriebe
URL para pagina web externa https://www.uni-goettingen.de/de/schahin+tofangchi/549620.html
Descripcion

The ubiquitousness of data and the emergence of data-driven machine learning approaches provide new means of creating insights. However, coping with the great volume, velocity, and variety of data requires improved data analysis methods. This dissertation contributes a nascent design theory, named the Division-of-Labor framework, for developing complex machine learning systems that can not only address the challenges of big data but also leverage their characteristics to perform more sophisticated analyses. I evaluate the proposed design principles in three practical settings, in which I apply the principles to design machine learning systems that (i) support treatment decision making for cancer patients, (ii) provide consumers with recommendations on two-sided platforms, and (iii) address a trade-off between efficiency and comfort in the context of autonomous vehicles. The evaluations partially validate the proposed theory, but also show that some principles require further attention in order to be practicable.