Areas | |
---|---|
Serie de libros (92) |
1283
|
Letra |
2286
|
Ciencias Naturales |
5334
|
Ciencias Ingeniería |
1731
|
Ingeniería | 284 |
Ingeniería mecánica y de proceso | 840 |
Ingeniería eléctrica | 667 |
Mineria y metalurgía | 30 |
Arquitectura e ingeniería civil | 73 |
General |
91
|
Leitlinien Unfallchirurgie
5. Auflage bestellen |
Lectura de prueba, PDF (200 KB)
Indice, PDF (51 KB)
ISBN-13 (Impresion) | 9783736978133 |
ISBN-13 (E-Book) | 9783736968134 |
Idioma | Inglés |
Numero de paginas | 216 |
Laminacion de la cubierta | mate |
Edicion | 2. |
Serie | Künstliche Intelligenz & Digitalisierung |
Volumen | 2 |
Lugar de publicacion | Göttingen |
Lugar de la disertacion | TU München |
Fecha de publicacion | 23.06.2023 |
Clasificacion simple | Tesis doctoral |
Area |
Ingeniería eléctrica
|
Palabras claves | time series, car crashes, machine learning, airbags, protection of passengers |
Classification of time series is an important task in various fields, e.g., medicine, finance, and industrial applications. This work discusses strong temporal classification using machine learning techniques. Here, two problems must be solved: the detection of those time instances when the class labels change and the correct assignment of the labels. For this purpose the scenario-based random forest algorithm and a segment and label approach are introduced. The latter is realized with either the augmented dynamic time warping similarity measure or with interpretable generalized radial basis function classifiers.
The main application presented in this work is the detection and categorization of car crashes using machine learning. Depending on the crash severity different safety systems, e.g., belt tensioners or airbags must be deployed at time instances when the best-possible protection of passengers is assured.